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Abstract

We describe a particular variant of the algebraic multi-grid method for
gradient integration on meshes with arbitrary topology and geometry, on
the plane or other surface of low genus. This problem is an essential task in
photometric stereo, and can be seen as a least-squares approach to solving
more general Poisson-type problems.

Unlike some geometric multi-grid methods, our algorithm – which we call
two-dimensional topological multi-grid (TMG2) – does not assume that the
mesh nodes have specific positions. Our novel mesh coarsening algorithm
runs in linear time and uses only the topology of the mesh, not the node
positions and distances. It produces a two-dimensional mesh with the same
underlying manifold topology but a guaranteed fractional reduction of the
number of variables and equations. The reduced mesh remains connected
even if the original one had narrow bridges.

We also describe robust formulas for converting gradient data sampled
in a regular grid, with local uncertainties and missing samples, into a topo-
logical mesh that can be the input of our integration method.

We show that our algorithm outperforms other surface gradient inte-
grator algorithms on typical data sets, especially on instances with poorly
connected meshes that cause previous multi-scale methods to fail.
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1. Introduction1

The integration of a gradient map to yield a height map is a compu-2

tational problem that arises in several computer vision contexts, such as3

shape-from-shading [1, 2] and multiple-light photometric stereo [3, 4]. In4

these applications, one usually obtains the mean normal vector of the ob-5

ject’s surface that is visible within each image pixel; which can be converted6

to the height gradient, that is, the partial derivatives (slopes) of the surface’s7

height Z with respect to the image coordinates X and Y .8

Although the gradient information alone does not determine the abso-9

lute surface heights, it can yield height differences between parts of the10

same surface. This relative height information is sufficient for many impor-11

tant applications, such as industrial quality control [5], pottery fragment12

reassembly [6], surveillance and customs inspections [7], face recognition [8],13

and many others.14

Abstractly, the gradient integration problem consists in the determina-15

tion of a unknown real-valued function Z(x, y) defined in a domain D ∈ R
2,16

given its gradient ∇Z = (∂Z/∂x, ∂Z/∂y) in that region. That is, we wish17

to compute Z such that18

∂Z

∂x
(x, y) = F (x, y)

∂Z

∂y
(x, y) = G(x, y) (1)

for each point (x, y) within D, where F and G are two known functions19

defined in D. This problem has a differentiable solution if and only if20

∂F

∂y
(x, y)− ∂G

∂x
(x, y) = 0 (2)

for each (x, y) ∈ D. The left side of equation (2) is the curl (rotational) of21

the vector field (F,G), thus the equation is called the zero curl condition.22

If condition (2) is satisfied, the solution Z can be obtained in various23

ways. For a rectangular domain D with lower corner placed at (0, 0), for24

example, it can be obtained by the formula25

Z(x, y) = C +

∫ y

0
G(0, v) dv +

∫ x

0
F (u, y) du (3)

where C is an arbitrary constant. Note that the degree of freedom rep-26

resented by C is an inherent characteristic of the original problem, not a27

limitation of the method.28
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1.1. Computational difficulties29

In practical contexts, the computation of heights from given slopes runs30

into three major difficulties. First, the gradient data F,G is usually dis-31

cretized, that is, given as a finite set of gradient samples, each being an32

average of the gradient ∇Z over some neighborhood of a gradient sampling33

point. Therefore, the height function cannot be precisely determined. It34

can only be approximated by a member of some finite-dimensional space of35

approximating functions. The approximating function can be (and usually36

is) uniquely represented by a finite set of discrete height samples, each being37

the estimated average of the height Z over some neighborhood of a height38

sampling point. Note that the height sampling points may not coincide with39

the gradient sampling points.40

Second, the gradient data is usually contaminated with noise arising41

from unavoidable measurement, quantization, and computation errors. In42

some parts of the domain D, the expected magnitude of the error may be43

so high that the gradient is essentially unknown. In the case of photomet-44

ric stereo and shape-from-shading, for example, it is usually impossible to45

determine the gradient where the scene’s surface is affected by shadows or46

specular highlights, is too dark, or is poorly illuminated. Gaps (or large47

errors) in the data will also arise wherever the actual height or gradient48

functions are inherently indeterminate, e.g. where the scene is highly porous,49

covered with hair-like structures, or transparent.50

Third, the height function Z(X,Y ) of a real scene is usually discontinu-51

ous. In particular, it almost always has step-like discontinuities, or cliffs, at52

the silhouette edges of solid objects. At any sampling point that straddles53

those cliffs, photometric stereo and other gradient acquisition techniques54

usually fail to detect the (very large) gradient across the cliff, and return an55

incorrect gradient sample that gives no clue as to the height of the cliff. See56

figure 1.57
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(a) (b) (c)

Figure 1: A height map with cliff-like discontinuities (a), its
color-coded gradient map (b), as could be obtained by photometric
stereo methods, and a binary image (c) showing the location of the
cliffs. Note that the gradient map is oblivious to the cliffs, and
gives no clue as to which end of the ramp (if any) is at ground level.

58

Some gradient integration algorithms try to detect data gaps and height59

discontinuities by analyzing the given gradient data. Usually, the violation60

of the zero-curl condition (2) is taken as an indication that the gradient61

data is unreliable at that point. However, as shown by the the example of62

figure 1, the gradient data simply does not contain the necessary information63

to reliably detect cliffs and bad data. Therefore, in this paper we assume64

that these flaws are identified by a separate algorithm (possibly using other65

data capture techniques), and they are given to the integrator separately66

from the gradient data, as a weight image, as shown in figure 1(c). See67

section 4.2 for the definition of that image.68

1.2. The region disconnection problem69

The presence of cliffs and missing data creates a major problem for70

methods that try to use the multi-scale approach to speed up the integra-71

tion [9, 10]: the possible disconnection of parts of the domain as the data72

is reduced to coarser and coarser scales [11]. When a rectangular grid of73

data is sub-sampled, any gaps or indeterminacies will persist in the smaller74

grid, and will occupy a proportionately larger area in it. Eventually these75

growing data gaps may completely separate parts of the domain, rendering76

the multi-scale integration ineffective.77

Specifically, a band of well-defined samples that is t grid steps wide and78

surrounded by data gaps will disappear after k ≈ log2(t) coarsening steps.79

See figure 2.80
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Figure 2: Example of region disconnection in grid-based multi-scale
integration. Top: perspective view of a height map Z = Z(X,Y )
with discontinuities. Middle: derivatives F (0) = ∂Z/∂X and
G(0) = ∂Z/∂Y sampled on a 256× 256 grid, and 256 × 256 binary
mask W (0) showing the location of the height discontinuities in the
domain (in black). Bottom: the maps F (4), G(4), and W (4)

resulting from 4 steps of filtering and sub-sampling. Note that the
central disk has become disconnected from the surrounding areas.

81

When two regions R and S become disconnected at some scale k, the height82

of R relative to S cannot be determined from the reduced data, not even83

approximately. Therefore, the height map Z(k) computed at that scale will84

not be a good starting guess for the iteration at the next finer scale k − 1,85

and it may take many iterations at that scale for the regions R and S to be86

displaced to the proper relative height. In fact, while the relative height of87

the two regions is being readjusted, the information computed inside them88

at the coarser scales is lost – and has to be recomputed, much more slowly,89
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at scale k − 1.90

1.3. Contributions91

The main contribution of this article is a flexible integration method for92

discretized gradient data, suitable for photometric stereo and other applica-93

tions, that can cope with non-uniform errors and gaps in the input gradient94

data, as well as discontinuities in the height field. We will denote it by the95

acronym TMG2, short for two-dimensional topological multi-grid.96

The general approach of the new method is similar to the multi-scale97

integrator described previously by Saracchini et al. [11], but using an irreg-98

ular and purely topological mesh in place of the rectangular grid of gradient99

samples used by most methods, including that one. See section 3. It is a100

special case of the algebraic multi-grid (AMG) approach, that preserves the101

connectivity even in poorly connected cases. The method is designed for102

gradient integration problem on the plane (or two-dimensional manifolds of103

low genus), but it can be used to solve other Poisson-type (second-order)104

integration and optimization problems as well.105

The irregular mesh representation allows TMG2 to overcome the discon-106

nection problem of previous multi-scale methods, described in section 1.2.107

By representing the given gradient data as an arbitrary planar mesh. in-108

stead of a regular grid, we can preserve the connectivity of the gradient data109

while reducing the spatial resolution. Moreover, the mesh allows the inte-110

gration of data that is irregularly spaced by nature, such as gradient maps111

that have been subjected to optical rectification, perspective correction and112

mosaic composition.113

Another contribution of this article is a robust method for the conversion114

of gradient data sampled in a regular rectangular grid to the weighted differ-115

ences mesh representation that is the input to our integrator. See section 5116

These two methods yield a gradient integrator algorithm that generally117

outperforms other integrators described in the literature, in running time,118

robustness against data errors and gaps, and accuracy of the computed119

height maps.120

2. Related Work121

A brief review and classification of gradient integration methods for pho-122

tometric stereo was provided by Saracchini et al. [11]. To summarize, most123

algorithms for this problem use one of four main techniques: path inte-124

gration [12, 13, 14, 15]; integration via Fourier transform [16, 17]; direct125
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solving of a system of linear equations that discretize the Poisson equa-126

tion [2, 18, 19, 20, 21], by Gaussian LU or Cholesky factorization; and local127

iteration [2, 11, 22, 23] by Gauss-Seidel or similar methods.128

Another classification was provided by Durou et al. [24, 25], according to129

six properties: (1) computational speed ; (2) robustness in face of Gaussian130

noise; (3) allowance for free boundary conditions; (4) handling of discontinu-131

ities such as caused by occlusions; (5) ability to process data with arbitrary132

domains, not just rectangular; and (6) need for fine tuning of the algorithm133

parameters for each instance of the problem. He found only one method134

that meets criteria (4) and (6), namely the path-based integrator of Fraile135

and Hancock [14]; which however fails at criterion (2), since it is extremely136

sensitive to measurement noise.137

Local iteration methods seem to be the most adequate for photometric138

stereo, because they are able to use Poisson or Krylov equations, even with139

Laplacian estimators that take into account missing or unreliable gradient140

data at each sampling point, satisfying most of the aforementioned criteria.141

Additionally, these methods can deal with moderately non-linear equations142

in the same iterative loop, without explicit linearization (as in the Newton-143

Raphson method). They also demand less space: their memory consumption144

grows proportionally to N whereas direct solving methods seem to require145

space proportional to N1.15 even with good sparse system solvers [11].146

The main disadvantage of local iteration methods is the potentially slow147

rate of convergence [11]. Each iteration requires only O(N) operations,148

but the number of iterations needed to reduce the initial error E bellow a149

tolerance ε is on the order of N log(E/ε), which implies a total processing150

time of N2 log(E/ε).151

This convergence can be accelerated by the multi-scale approach, as152

suggested by Terzopoulos [9, 10]. In this approach, the original gradient153

data F,G is properly sub-sampled to give F ′, G′ a lower resolution scale.154

This data is integrated recursively to yield a height field Z ′ at the same155

resolution. This coarse solution is then interpolated to give the initial guess156

for the iterative computation of the desired solution Z.157

The multi-scale iterative method developed by Saracchini et al. [11] is158

competitive in speed with Fourier based integration, while still being able159

to cope with missing data, non-uniform error, and height discontinuities. It160

expects to receive, as part of the input data, a weight image that specifies161

the regions of the domain where the gradient is unreliable (such as along the162

discontinuities). However, the multi-scale approach fails to retrieve proper163

height map estimates within an acceptable number of iterations if the do-164

main becomes disconnected at the coarsest scales of the multi-scale pyramid.165
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In 2015, Quéau et al. [23] described an integrator based on the energy166

minimization principle. They considered three minimization strategies in-167

spired by image denoising techniques: weighted least-squares, total varia-168

tion, and L1 optimization. Like many other integrators, his algorithm tries169

automatically detect data gaps and cliffs by looking for inconsistencies in170

the gradient data.171

In 2016, Breuß et al. [26] proposed the usage of a fast-marching method172

in order to provide a first approximation for iterative Poisson-based and173

Krylov-based solvers. Their FM integrator is very fast and with very little174

memory overhead compared with direct solvers. However, it is reportedly175

less accurate than the other methods.176

3. Weighted Differences Mesh177

Our main contribution is the representation of the integration problem178

as a weighted differences mesh, which consists in a directed graph G with179

vertices V G and directed edges E G, where each vertex v is associated to a180

unknown height value z[v], and each edge e has two numerical attributes:181

the difference d[e] and the weight w[e]. See figure 3. By definition, for182

each directed edge e in the weighted mesh, the reverse edge sym(e) is also183

present with d[sym(e)] = −d[e] e w[sym(e)] = w[e]. However when drawing184

the mesh, only one of those edges is shown.185

5:5

-5:5

0:5

0:8 -2:3

0:21:6 1:5

Figure 3: A small weighted differences mesh. The edge labels are the
pairs d[e] : w[e]. Note that only one of the edges e, sym(e) is shown.

186
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The attribute d[e] is to be interpreted as an estimate of the difference z[v]−187

z[u] between the height values of the destination vertex v = dst(e) and188

the source vertex u = org(e). In our algorithm, this estimated is obtained189

by interpolation, extrapolation, and scale reduction of the given gradient190

data. Thus, the differences mesh can be seen as a position independent191

discretization and abstraction of the partial differential equations (1).192

The weight w[e] of an edge e is a non-negative real number which ex-193

presses the reliability of the difference d[e]. More specifically, we assume194

that the edge difference d[e] includes a Gaussian measurement error, with195

expected value zero and variance proportional to 1/w[e]. In particular,196

w[e] = 0 signifies that the difference d[e] is totally random and contains197

no useful information. Such edges can be removed from the mesh without198

effect on the computed solution.199

We say that a mesh is simple if it does not have parallel edges, that is,200

two or more edges with same source and destination. In a simple mesh,201

we can identify each edge e with the ordered pair (u, v) of its source and202

destination vertices. In this case, we can denote d[e] also as d[u, v] and w[e]203

by w[u, v].204

3.1. Edge equations205

A weighted mesh G can be interpreted as a system of edge equations, the206

linear equations207

z[dst(e)]− z[org(e)] = d[e] (4)

for each directed edge e. The problem of mesh integration is to compute the208

most probable value z[v] for each vertex v, given the parameters d[e], w[e]209

of each edge e.210

It is evident that each connected component of G can be treated as a211

separate instance of this problem. Thus we will assume that the graph G212

is always connected. Moreover, since the equations (4) depend only on the213

value differences, the solution for a connected mesh will have one and only214

one degree of freedom: an additive constant C.215

A set of height values z is said to be tension free if all equations (4) are216

satisfied exactly. This is the case if and only if the sum of differences of217

edges along any directed cycle is zero. This property is analogous to the the218

zero curl condition for the continuous integration problem of section 1. In219

particular, if the mesh has only one simple path between two vertices (that220

is, a tree), it always has a tension free solution.221
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3.1.1. Path integration on a mesh222

If a weighted differences mesh admits a solution z[v] free of tension, that223

solution can be computed by choosing an arbitrary spanning tree T for G,224

associating an arbitrary equation for a given vertex v0 and using equation (4)225

to compute the heights of other vertices in order of increasing graph distance226

from v0 along T . Note that the weights of the edges are irrelevant in this227

case. This algorithm is the irregular-mesh version of the path integration228

formula (3).229

3.2. Vertex equilibrium equation230

If a weighed differences mesh G has cycles, however, the system of equa-231

tions (4) is over-determined. In this case, the existence of a tension free232

solution is unlikely. If we apply the path integration algorithm to this case,233

the computed height z[u] will depends on the choice of the path from v0 to234

u.235

If the system (4) is over-determined, the assumption of independent236

Gaussian measurement errors in the edges and Bayesian analysis imply that237

the most probable set of values z is the solution by least squares of that sys-238

tem; that is, the values z that minimize the quadratic discrepancy function239

Q(z) =
∑

e∈E G

w[e] (z[dst(e)] − z[org(e)] − d[e])2 (5)

Suppose that the mesh G is simple and let G[u] be the set of vertices adjacent240

to the vertex u ∈ G. The function Q is minimized when each vertex u is in241

equilibrium; that is, if only and only if we have242

∑

v∈G[u]

w[u, v] (z[v] − z[u]− d[u, v]) = 0 (6)

We can write the equation (6) as243

z[u] =
1

wtot[u]

∑

v∈G[u]

w[u, v](z[v] − d[u, v]) (7)

where244

wtot[u] =
∑

v∈G[u]

w[u, v] (8)

In other words, equilibrium occurs when z[u] is the weighted average of245

z[v] − d[u, v] of all neighbors v of u, where each of these terms is weighted246
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by w[u, v]. The solution z is tension-free if all the terms z[v] − d[u, v] have247

the same value. Equation (7) can also be written as248

z[u]−
∑

v∈G[u]

λ[u, v]z[v] =
∑

v∈G[u]

λ[u, v]d[u, v] (9)

where λ[u, v] is w[u, v]/wtot[u], the relative weight of v among the neighbors249

of u.250

The vertex equilibrium equation (9) can be seen as an abstraction of251

the Poisson formulation of the integration problem [11]. Namely, the left-252

hand side of (9) can be seen as an estimate of the Laplacian of Z, obtained253

from the (unknown) height values by a second-order finite difference for-254

mula; whereas the right-hand side would be another (known) estimate of255

the Laplacian, obtained by differentiating the gradient data once. Equating256

these two estimates gives a linear system that has a unique solution (apart257

from a constant).258

3.3. Physical analogies259

The following mechanical analogy may help understand the mesh inte-260

gration problem. Each vertex v is modeled as a mass-less horizontal plate,261

which is free to move vertically, but cannot move horizontally or rotate.262

The value z[v] is the vertical position of said plate. Each edge e = (u, v) is263

modeled as an ideal vertical spring with rigidity coefficient w[e], connected264

to the plates u and v so as to apply to the bottom plate a vertical force265

with value w[e](z[v] − z[u] − d[e]), and an equal but opposite force to the266

top plate. That is, the spring tries to pull or push the plates apart, trying267

to make the distance z[v] − z[u] to be equal to d[e].268

A set of values z[v] which minimize Q(z) is a situation of mechanical269

equilibrium, in which the total force acting on each plate is zero. Note270

that the potential energy of the springs is 1
2Q(z), and the system will be in271

equilibrium (no forces actuating in each vertex) when its potential energy272

is minimum. In particular, the solution z is free of tension if Q(z) is zero,273

that is, if each spring length is equal to its relaxed length.274

Another analogy for this mathematical problem is an electrical circuit275

where each vertex v is a conductive node, the variable z[v] the electrical276

potential of the node (in volts) and each edge (u, v) a battery with driving277

voltage d[u, v] and internal resistance 1/w[u, v] (in ohms) connected to the278

nodes u and v. Thus, the current (u, v) (in amperes) that arrives in u by279

the edge [u, v] is −w[u, v](z[v] − z[u] − d[u, v]). The functional Q(z) is the280

electrical power dissipated by the circuit. Then equation (6) is Kirchoff’s281
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law, which is satisfied when the circuit is electrical equilibrium and the net282

total current entering and exiting each node is zero.283

3.4. Matrix formulation284

In order to express the problem in matrix form, let v1, v2, . . . , vn, the285

vertices of G, in arbitrary order, and e1, e2, . . . , em a list of directed edges286

from G, also in arbitrary order, which has only one directed version of each287

pair e and sym(e). Let also288

• A be the incidence matrix of G, that is, an m × n matrix such that289

Akj is +1 if the vertex vj = dst(ek), −1 if vj = org(ek), and zero290

otherwise;291

• W be a diagonal m×m matrix such that Wjj = w[ej ];292

• d be a column vector of m elements such that dj = d[ej ];293

• z be a column vector of n elements such that zk = z[vk];294

for each i, j ∈ {1, . . . ,m} and each k ∈ {1, . . . , n}. Then the functional Q295

can be expressed as a matrix product:296

Q(z) = (Az− d)⊤W(Az− d) (10)

where M⊤ denotes the transpose of the matrix M. The vector z that min-297

imizes Q can be computed by differentiating this formula with respect to298

each zk and equating it to zero. In matrix form, the equations are299

Mz = b (11)

where300

M = A⊤WA (12)

b = AWd (13)

The solution of the linear system (11) can be then computed by the Gauss-301

Seidel or direct solving methods.302

4. Converting a gradient image to a difference mesh303

In this section we describe the conversion of gradient data from the image304

format (arrays of discrete gradient samples, taken on an uniform rectangular305

grid of points) into a weighted differences mesh G.306
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4.1. Discretizing F and G307

We assume that the gradient data is given as two derivative maps, that308

is, two matrices f [u, v] and g[u, v], with nx columns and ny rows, where the309

indices u, v range in {0, 1, . . . , nx − 1} and {0, 1, . . . , ny − 1}, respectively.310

By definition, the domain D of the problem is the rectangle [0, nx]× [0, ny] ∈311

R
2. Each element [u, v] from the derivative maps can be identified with the312

unit side square centered on the gradient sampling point p[u, v] = (u +313

1/2, v+1/2), with (u, v) and (u+1, v+1) in opposite corners. See figure 4.314

4.2. The weight map315

We assume that, together with the gradient data, we are also given a316

weight image: an array w of non-negative values, with the same dimensions317

as f and g. Our algorithms assume that the samples f [u, v] and g[u, v]318

at each sampling point p[u, v] are contaminated by additive Gaussian noise319

with variance proportional to 1/w[u, v].320

In particular, if w[u, v] is zero, the gradient is assumed to be completely321

indeterminate at p[u, v]. We assume that w[u, v] is zero, and therefore f [u, v]322

and g[u, v] are indeterminate, when the point p[u, v] is outside the domain323

D. Note that only the relative weight magnitudes are significant, that is,324

the results wont be affected if we multiply all the weights by a positive scale325

factor.326

4.3. Discretizing Z327

The function Z is represented by a height map, a matrix z[u, v] with328

nx + 1 columns and ny + 1 rows that represents the estimated height Z at329

the height sampling point q[u, v] = (u, v). See figure 4. Thus, note that the330

gradient sample points p[u, v] are assumed to be shifted by one half pixel,331

along each axis, relative to the height sampling points q[u, v].332
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z[u, v]

q[u, v]

z[u− 1, v]

q[u− 1, v]

z[u+ 1, v]

q[u+ 1, v]

q[u, v − 1]

z[u, v − 1]

z[u, v + 1]

q[u, v + 1]

f [u− 1, v − 1]

g[u− 1, v − 1]

w[u− 1, v − 1]

p[u− 1, v − 1]

f [u, v − 1]

g[u, v − 1]

w[u, v − 1]

p[u, v − 1]

f [u− 1, v]

g[u− 1, v]

w[u− 1, v]

p[u− 1, v]

f [u, v]

g[u, v]

w[u, v]

p[u, v]

Figure 4: Gradient sampling points p[x, y] and height sampling
points q[x, y] around the point q[u, v] = (u, v).

333

The grid edges are the line segments that connect two height sampling points334

that are adjacent horizontally or vertically; that is, from each q[u, v] to either335

q[u+1, v] or q[u, v+1], provided that both endpoints are inside D or on its336

border. The edges of the difference mesh G will correspond to a subset of337

the grid edges, each oriented in both ways, with appropriate difference and338

weight attributes.339

In practice, the derivative maps f [u, v] and g[u, v] are almost always340

an average of the continuous derivatives F = ∂Z/∂x and ∂Z/∂y in the341

neighborhood of the point p[u, v], obtained by convolution with a gradient342

sampling kernel. This kernel should be symmetric relative to p[u, v] and343

should overlap partially the neighboring kernels. Similarly, the computed344

height z[u, v] will be an estimate of the average Z around the point q[u, v],345

obtained by some height sampling kernel. The relationship between those346

two kernels is outside of the scope of this paper.347

4.4. Interpolated edge gradients348

In order to improve the legibility of the following formulas, when u and v349

are fixed by the context, we will use the notation z◦◦ for the desired height350

sample z[u, v], and the following notations for the adjacent samples:351

z−◦ = z[u− 1, v] z◦− = z[u, v − 1]
z+◦ = z[u+ 1, v] z◦+ = z[u, v + 1]

(14)
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In order to build the mesh, our algorithm first estimates the derivative F
or G at the midpoint of the grid edge between q◦◦ = q[u, v] and each of its
four neighbors. We denote those values as follows:

f−◦ ≈
∂Z

∂x
(u− 1

2
, v) g◦− ≈

∂Z

∂y
(u, v − 1

2
)

f+◦ ≈
∂Z

∂x
(u+

1

2
, v) g◦+ ≈

∂Z

∂y
(u, v +

1

2
)

Our algorithm also assigns weights to those derivative estimates, which we352

will denote w−◦, w+◦, w◦−, and w◦+. See figure 5. The computation of353

these values and weights is described in section 4.6.354

z◦◦
q◦◦

z◦−
q◦−

z◦+
q◦+

z−◦
q−◦

z+◦
q+◦

g◦−
w◦−

g◦+
w◦+

f−◦
w−◦

f+◦
w+◦

Figure 5: Notation for the interpolated gradient values f and g, the
respective weights w, and the desired height values z around the
point q◦◦ = q[u, v].

355

4.5. The mesh edge equations356

We can relate the desired height values to those interpolated derivatives,357

by equating the difference of the two values with the appropriate derivative358

at the midpoint of the grid edge connecting them. Namely, for each height359

sampling point q◦◦ = q[u, v], we have the following equations, with the360

respective weights in parentheses:361

z+◦ − z◦◦ = +f+◦ (w+◦) z◦+ − z◦◦ = +g◦+ (w◦+)
z−◦ − z◦◦ = −f−◦ (w−◦) z◦− − z◦◦ = −g◦− (w◦−)

(15)
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Each equation in this set that has a positive weight is represented in the362

mesh G by a directed edge e from vertex z◦◦ to the corresponding adjacent363

vertex. The difference attribute d[e] of e is the interpolated derivative on the364

right-hand side of the equation, and the weight attribute w[e] is the weight365

associated to that interpolated value.366

Note that, by applying these rules to every height sampling point q[u, v],367

every undirected edge of the grid with positive interpolated weight will give368

rise to two oppositely directed edges e′, e′′ of the mesh, with d[e′] = −d[e′′]369

and w[e′] = w[e′′].370

As detailed in section 4.6, if q◦◦ lies along the border of the domain371

rectangle D, any edge e to a neighbor that lies outside D will get zero372

weight w[e], and thus will be omitted from the mesh G.373

4.6. Interpolating the derivatives374

In this section we describe how we obtain the derivative estimates f+◦,375

f−◦, g◦+, and g◦− at the edge midpoints, needed for the equations (15), and376

the corresponding weights w+◦, w−◦, w◦+, and w◦−. Each slope estimate377

is computed by interpolation and/or extrapolation of up to four adjacent378

slope samples, two on each side of the edge.379

For example, the estimate gm = g◦+ for the derivative ∂Z/∂y, at the mid380

point pm = (u, v + 1
2) of the edge between q[u, v] e q[u, v + 1], is computed381

from the four given derivative samples ga = g[u − 2, v], gb = g[u − 1, v],382

gc = g[u, v] and gd = g[u + 1, v], which are the derivatives sampled at the383

points pa = p[u − 2, v] = (u − 3
2 , v + 1

2), pb = p[u − 1, v] = (u − 1
2 , v + 1

2 ),384

pc = p[u, v] = (u+ 1
2 , v+

1
2) and pd = p[u+1, v] = (u+ 3

2 , v+
1
2 ), respectively.385

Note that the distances (signed) of those points to pm are −3
2 , −1

2 , +1
2386

and +3
2 respectively. The reliability weight wm = w◦+ of the result gm387

is computed from the weights wa, wb, wc and wd of the input derivative388

samples. See figure 6.389

ga
wa

gb
wb

gc
wc

gd
wd

gm
wm

q[u, v + 1]

q[u, v]

Figure 6: Data used to compute the interpolated derivative
gm = ∂Z/∂y at the point pm = (u, v + 1/2), and its weight wm.

390
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Considering consecutive pairs of those four values, by linear interpolation391

or extrapolation, we obtain three estimates for the derivative ∂Z/∂y at the392

edge midpoint r:393

g− = (−ga + 3gb)/2
g◦ = (gb + gc)/2
g+ = (+3gc − gd)/2

(16)

Given the interpretation of w[u, v] as the reciprocal of the variance of the394

noise in g[u, v], the weights of said estimates will be395

w− = 4/(1/wa + 9/wb)
w◦ = 4/(1/wb + 1/wc)
w+ = 4/(9/wc + 1/wd)

(17)

We then take the weighted average gm of those three estimates and compute396

the corresponding weight wm, by the formulas397

gm =
w−g− + w◦g◦ + w+g+

w− + w◦ + w+

wm = w− + w◦ + w+

(18)

Note that each of the weights w−, w◦ or w+ will be zero if its formula398

depends on a weight that is zero. In particular, derivative samples that lie399

outside the index range of the arrays f and g are automatically excluded400

from the estimate gm. If one or more of the weights wa, wb, wc and wd are401

zero, the formulas (??)–(16) get simplified as follows:402

Table 1: Corresponding average gradients and weights for samples
with zero weight.

Case Interpolated derivative gm Weight wm

wa = 0 (w◦g◦ + w+g+)/(w◦ + w+) w◦ +w+

wb = 0 g+ w+

wa = wb = 0 g+ w+

wa = wc = 0 — 0

wa = wd = 0 g◦ w◦

403

The remaining cases (wc = 0, wb = wd = 0, etc.) are symmetric to the404

above.405
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Note that we do not try to interpolate the derivative gm by combining406

non-consecutive samples, such as (ga + 3gc)/4. If the intermediary samples407

(gb, in this case) have low or zero weight, those two samples may straddle408

a discontinuity of the height Z; in which case the interpolated derivative409

would be meaningless, even if the two samples have large weights wa and410

wc.411

If all three weights w−, w◦ and w+ are zero, the final weight wm will be412

zero by the formula (18). In this case, the estimate gm is irrelevant. We will413

denote the computation described by formulas (16–18) as the procedure414

(gm, wm)← Interpolate(ga, wa, gb, wb, gc, wc, gd, wd) (19)

In order to obtain f+◦, the estimated value of ∂Z/∂x at the mid point415

s = (u + 1
2 , v) of an horizontal edge, we apply this same Interpolate416

procedure to the four samples above and below the edge, two on each side;417

that is, fa = f [u, v − 2], fb = f [u, v − 1], fc = f [u, v] and fd = f [u, v + 1]418

with their respective weights. The estimates g◦− and f−◦ are computed in419

the sane way.420

5. Topological multi-grid integration421

The core of our algorithm is a decimation procedure which removes a422

certain fraction of the vertices of the input mesh G, and adds some bridging423

edges, producing a smaller mesh G′. The vertices of G′ are a subset of424

V G, and the edges of G′ are constructed so that they summarize the weight425

and difference information contained in the corresponding edges of G. The426

integration problem is then solved recursively for the mesh G′, generating427

height estimates z′ for its vertices. By interpolation of those heights we428

obtain a initial guess z of the heights in the original mesh G. The heights429

z are then adjusted by the iterative Gauss-Seidel method. The recursion is430

interrupted when the mesh z is reduced to a single vertex v, at which point431

we can set z[v] to zero.432

In other words, we build a pyramid G(0), G(1), . . . , G(m) of meshes where433

G(0) is the input mesh G, G(m) is a single vertex v, and each mesh G(k+1)
434

is obtained by decimation of the previous mesh G(k). We compute then the435

solutions z(m), z(m−1), . . . , z(0), in this order, where z(m)[v] is zero, and each436

z(k) is obtained from z(k+1) by interpolation and Gauss-Seidel iterations.437

The output of the algorithm is then the map z(0). See figure 7.438
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G(0) G(1) . . . G(13)

⇒ ⇒ . . . ⇒

⇓ ⇓ ⇓

⇐ ⇐ . . . ⇐

Z(0) Z(1) . . . Z(13)

Figure 7: Multi-scale mesh integration.

439

Formally, the algorithm is the recursive procedure MSMeshIntegrate,440

whose the pseudo-code is given in figure 8. It receives as input the weighted441

differences mesh G, the maximum number of iterations q, and a tolerance442

ε, and returns a vector of values z for V G.443

Procedure MSMeshIntegrate(G, q, ε)
1. If #V G = 1 then

2. Let v be the single vertex in V G; do z[v]← 0;
3. else

4. G′ ← Decimate(G);
5. β ← #V G′/#V G;
6. z′ ←MSMeshIntegrate(G′, q/

√
β, ε
√
β, );

7. z ← Interpolate(z′, G);
8. z ← SolveSystem(z,G, q, ε);

9. Return z.

Figure 8: Main procedure of the multi-scale integrator for weighted
difference meshes

444

5.1. Mesh decimation445

The procedureDecimate called in the step 4 receives a simple connected446

and planar mesh G and returns a smaller mesh G′, which is itself simple,447

planar and connected.448
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The Decimate procedure first partitions V G in a set R of vertices to449

be removed, and a complementary set K of vertices to be kept. The set450

R is a maximal subset of independent (pairwise non-adjacent) vertices with451

maximum degree 6. To achieve this goal, the procedure uses an attribute452

mark for each vertex, which can have three possible states: remove, keep453

and blank. Initially every vertex is marked as blank. For each degree454

k, from 1 to 6, the procedure scans sequentially all the vertices that are in455

blank state. When a vertex of degree k is found, it is marked as remove456

and all its neighbors which still blank are marked as keep. In the end, the457

set R consists of all vertices marked as remove, and K has all the vertices458

marked as blank or keep.459

After defining the sets K and R, the vertices in R are removed from G.460

Every time that a vertex u is removed, the edges connected to u are also461

removed. If u is of degree 1, no additional action is needed. If u has degree462

greater or equal than 2, new edges are added to G′, connecting the neighbors463

of u, as described in section 5.4. Note that all those vertices are in K and464

therefore they will be always vertices of G′.465

5.2. Interpolation of heights466

Once a solution z′ is obtained for the reduced mesh G′ (step 6 of pro-467

cedure MSMeshIntegrate), it is converted into an initial guess of z to468

the complete mesh G by the procedure Interpolate (step 7). Initially,469

for each vertex v in K (which exists in both meshes), we set z[v] ← z′[v].470

Then, for each vertex u in R (which exists only in G), we compute z[u] by471

the equation of vertex equilibrium (7). Note that each neighbor v ∈ G[u]472

belongs to K, and therefore its height z[u] is already defined.473

5.3. Iterative adjustment474

The initial estimate z computed by Interpolate satisfies the vertex475

equilibrium equation (7) for the vertices in R, but generally not for the476

vertices in K. That estimate used as initial guess for the Gauss-Seidel477

SolveSystem procedure (step 8). Each iteration of SolveSystem exam-478

ines each vertex u ∈ V G and uses the equation (7) to re-compute its value479

z[u] from the current values z[v] of its neighbors.480

The SolveSystem procedure stops after a specific number of iterations481

κ, or when the variation between a value z[u] from one iteration to another482

is smaller than a given tolerance ε, for each vertex u, whichever happens483

first.484

Note that, at each level of recursion, the limit κ to the number of it-485

erations is increased by a factor 1/
√
β, and the tolerance reduced by

√
β486
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(step 6); where β = # E G′/# E G is the mesh reduction factor achieved by487

Decimate (step 4).488

5.4. Adding the new edges489

We now describe the new edges that are added by the Decimate proce-490

dure, between the neighbors of a removed vertex u. Basically, the endpoints,491

weights and differences of these new edges are chosen so that the solution492

z′[v] for the mesh G′ is close to the solution z[v], for each vertex v ∈ K.493

More precisely, let k be the degree of u in G; let e0, e1, . . . , ek−1 the494

edges connected to u in counter-clockwise order; and let v0, v1, . . . , vk−1 the495

corresponding destination vertices. Let wi = w[ei] be the weight of the edge496

ei and di = d[ei] its difference. It is easy to show that the solution z′ for497

each G′ is a subset of the solution z of G, if, for each pair i, j, we add an498

edge e′i,j from vi to vj with the following attributes:499

d′ij = dj − di w′
ij =

wiwj

wtot
(20)

where wtot is the sum of weights w0, w1, . . . , wk−1. We call this operation500

— removal of u and every edge ei connected to it, and creation of edges e′ij501

between all pairs of neighbors of u — the star-clique swap for u.502

In particular, if the vertex u has degree k = 2, the swap will only add503

a new pair of opposite edges e′0,1 e e′1,0. If the degree k is 3, only the edges504

e0,1, e
′
1,2, e

′
0,2 and their reverses will be added. In both cases the planarity505

of the mesh is preserved.506

However, if k is greater than or equal to 4, the star-clique swap would507

make G′ non-planar, which would severely affect the algorithm’s efficiency.508

Therefore, in this case we add only the edges e′i,i+1 which connect the succes-509

sive vertices in a cycle; namely, between vi and vi+1 for i ∈ {0, 1, . . . , k − 1},510

with indices reduced modulo k. We call this operation the star-cycle swap511

for u. The differences d′i,i+1 between such edges are assigned by formula (20),512

that is:513

d′i,i+1 = di+1 − di (21)

whereas the weights w′
i,i+1 are given by distinct formulas depending on the514

degree k, as given in the table 2.515
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Table 2: Formulas for the weight w′
01 of the new edge e′01 = (v0, v1)

created by the star-cycle swap, for each degree k. The same
formulas are valid for every other edge e′i,i+1, except that the

indices are incremented by i modulo k.

k w′
01

2 w0w1/wtot

3 0.5(w0w1 + w1w2)/wtot

4 (w0w1 + 0.5(w0w2 + w1w3))/wtot

5 (w0w1 + 1.1690(w2w4 +w0w2 + w1w4))/wtot

6 (w0w1 + 2w5w2 + 1.5(w5w1 + w0w2))/wtot

516

In contrast with the star-clique swap, the star-cycle swap does not ensure517

that the height values determined from the mesh G′ are exactly the same518

as those determined by the mesh G. In fact, it is not possible to ensure this519

condition by adding only a subset of edges e′ij of the clique, whose differences520

d′i and weights w′
i are computed by local formulas (that is, dependent only521

on the attributes of the edges incident to u). To ensure that condition, one522

would have to analyze the entire Gmesh, and essentially solve the integration523

problem – which would make the multi-scale approach pointless.524

However, our experiments shows that, by adding only the k edges from525

the cycle with the weights shown in table 2, the solution z′ of the mesh G′
526

has the correct low frequency terms of the solution z of G. This implies that527

the corrections that need to be made to the mesh z are highly localized, and528

can be removed with a few Gauss-Seidel iterations.529

5.5. Removing parallel edges530

The star-cycle swaps in the Decimate procedure may create parallel531

edges, which can be either new edges added when applying the swap to532

distinct R vertices, or edges from the original mesh G that have both ex-533

tremities within the set K and thus were not removed.534

Therefore, after all the star-cycle swaps have been applied, the procedure535

Decimate simplifies the mesh G′, replacing every group of two or more536

edges with same source and destination for a single equivalent edge. In537

particular, if the edges e′ and e′′ have the same source and destination, they538

are replaced by a single edge e with the following attributes539

w[e] = w[e′] + w[e′′] d[e] =
w[e′]d[e′] +w[e′]d[e′]

w[e′] + w[e′′]
(22)
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This process is repeated until there are no more parallel edges. It is easy540

to see that this process does not change the solution z defined by the equa-541

tions (7).542

5.6. Analysis of the algorithm543

Correctness: It is easy to see that, if the input mesh G is connected,544

planar, and simple, the mesh G′ returned by Decimate will be connected,545

planar, and simple too. Therefore, the same will hold for all levels of the546

multi-scale mesh pyramid. The algorithm MSMeshIntegrate is therefore547

immune to problems caused by premature loss of connectivity, even if the548

original mesh has parts that are connected to each other only by a single549

edge or path.550

Moreover, the vertex equations (7) are dominated by the diagonal. There-551

fore, when the Gauss-Seidel algorithm is applied at scale 0, with proper552

values of κ and ε, will converge to the unique solution z = z(0) of those553

equations, independently of the initial estimate obtained by the decimated554

mesh G(1).555

Time and space: The efficiency of the algorithm depends on the reduction556

factor β obtained by the procedureDecimate, and on the number of Gauss-557

Seidel iterations needed in each level. Let N = #V G, Nk = #V G(k),558

M = # E G, andMk = # E G(k). Let βk be the mesh reduction factor at step559

k, that is, # E G(k+1)/# E G(k); and let β̂ be the largest of those numbers. If560

β̂ < 1 then the maximum scale m will be log1/β̂ N = O(logN), and the total561

number Ntot of vertices of all meshes will be at most N/(1 − β̂) = O(N).562

We now show that the upper limit for β̂ is less than 1. Since G is simple563

and planar, by Euler’s formula we conclude that M ≤ 6N , and that G has564

at most N/7 vertices with degree less than or equal to 6 [27]. The same565

conclusions are valid about Nk and Mk, for all reduced meshes G(k). From566

those facts, it is possible conclude that β̂ ≤ 41/42 ≈ 0.976 [27]. ThereforeM567

is at most 20 log2 N and Ntot is at most 42N . However, these are worst-case568

theoretical bounds; in typical meshes, such as those that are obtained from569

rectangular grid data, the reduction factor β̂ turns out to be close to 0.6,570

which gives M ≈ 1.4 log2 N and Ntot ≈ 2.5N .571

The amount of memory required by the algorithm is dominated by the572

data structure that represents each mesh G(k). A simple representation,573

which suffices for our purposes, consists of an edge table with 2Mk entries,574

each one containing the destination, weight, and difference of each directed575

edge G(k), ordered by the source vertex; and a vertex table with Nk entries,576

which stores, for each vertex v, the index of the first entry in the edge table577
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with source v. The total storage space is therefore at most Nk +2× 3Mk ≤578

19Nk words for the mesh G(k), and at most 19Ntot ≈ 47.5N words for all579

meshes in the pyramid.580

The planarity condition also ensures that the decimation algorithm runs581

in time O(Nk + Mk) = O(Nk) for each level k. Therefore all levels of the582

pyramid are built in total time O(Ntot) = O(N).583

The time necessary for a single iteration of the Gauss-Seidel at the level k584

is Θ(Nk+2Mk) = Θ(Nk), and the number of iterations executed at this level585

is (Nβ̂k)(κ/β̂k/2) = Nβ̂k/2; which implies total time of O(N/(1 −
√

β̂)) =586

O(N).587

Convergence speed: As in the work of Saracchini et al. [11], this algo-588

rithm exploits the fact that a Gauss-Seidel iteration converges rapidly if589

the error consists mostly of high frequency spatial errors. When the mesh590

is decimated, the high frequency components are mostly suppressed, while591

the low frequency components have their wavelength reduced by a factor592

approximately
√
βk. Thus, the recursively computed solution z(k+1), after593

expanded to the previous scale z(k), will be correct mostly in the low fre-594

quency components, with small-scale details missing. Those missing details595

will be recovered after a small number of Gauss-Seidel iterations, which is596

largely independent of Nk. The whole recursive process is fast because each597

spectral component of the height map is computed in the scale where its598

spatial frequency is low.599

Unfortunately, this intuitive explanation is not easy to formalize, much600

less easy to demonstrate theoretically, since it needs a formulation of “fre-601

quency” for an irregular topological mesh, which is outside the scope of this602

work. However, the experimental tests show that convergence is achieved603

after few iterations, even with instances where other multi-scale methods604

fail.605

6. Experiments and discussion606

In this section we compare the cost and precision of our topological607

multi-grid integrator (TMG2, here abbreviated to MG) with other published608

methods.609

We consider only methods which are able to deal with discontinuities and610

missing data. They comprise: the Poisson-based integrators presented by611

Agrawal et al. [19], specifically the M-Estimators (AM) and Diffusive Affine612

Transform (AT) methods; the multi-scale grid integrator of Saracchini et613

al. [11] (MS); and the iterative methods developed by Quéau and Durou [23],614
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namely Isotropic Total Variation (DT) and L1 Functional (DL). See table 3.615

Note that the popular Fourier-based integrator of Frankot and Chellapa [16],616

in particular, cannot cope with missing data or non-rectangular domains.617

We could not test the integrator proposed by Breuß et al. [26] since its618

source code was not available at the moment of writing this paper. Anyway,619

it is a pre-processing step for some Poisson or Krylov-based integrator, which620

could be one of the methods listed above.621

Table 3: Tested integration methods.

Tag Description

AT Diffusive Affine Transform [19, 28]

AM M-Estimators [19, 28]

DT Isotropic Total Variation [23]

DL L1 Functional [23]

MS Weighted multi-scale on regular grid [11]

MG Weighted multi-scale on differences mesh (TMG2)

622

The algorithms provided by Agrawal and Durou (AT, AM, DT, and DL) were623

implemented by the authors in MATLAB [29]. In order to make the com-624

parisons more meaningful, we modified Agrawal’s algorithms to use a weight625

image given as an additional input, instead of letting them estimate the626

weights from the f and g images. Our own algorithms (MS and MG) were627

implemented in C.628

All tests were executed on an Intel I5-3470 at 3.2 GHz with 16GB of629

RAM memory. The MATLAB scripts were executed in MATLAB version630

2009b under Windows 7, whereas the compiled C programs were compiled631

with the Gnu C compiler [30] and executed under Linux Debian 7.0. In632

order to avoid inconsistent results due to processor swapping and the in-633

built parallelization of MATLAB, the running times were measured with634

each process bound to only one core of the CPU.635

6.1. Test datasets636

We used six test datasets, each originally obtained as regular height637

sample arrays z∗ with 2048 × 2048 samples. Four of the datasets (spdome,638

mixwav, cbabel, and cpiece) were obtained by sampling mathematical639

functions. The bebust dataset was obtained from a laser-scanned bust of640

Beethoven, a standard benchmark in 3D modeling [31]. The dtbust dataset641

was obtained from a live subject by a 3DMT scanner [32], which resulted in642
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a triangular mesh surface with 76,601 faces. The mesh was converted to a643

height map and numerically differentiated.644

Note that the datasets cbabel, cpiece, and dtbust have cliffs where the645

gradient is undefined; and both bebust and dtbust have extended regions646

where the gradient data is not available. The dtbust set also has weakly647

connected regions due occlusions, and several small regions with missing648

data. For all models, the weight image was created by hand with an image649

editor, as a gray-scale image where the cliffs and undefined regions were650

marked in black (weight 0) over a background of white (weight 1). See651

figure 9 and 10.652

spdome mixwav cbabel

Figure 9: The test datasets spdome, mixwav and cbabel, showing the
gradient maps f and g (topmost two rows), the weight maps w
(third row), and the correct height map z∗ in perspective (bottom
row).

653
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cpiece bebust dtbust

Figure 10: The test datasets cpiece, bebust and dtbust.

654

We processed each dataset as given, and also after perturbing the gradient655

maps f and g by mixing them with 30% Gaussian white noise.656

6.2. Accuracy Tests657

In the accuracy tests, we verified the quality of the computed height658

maps by comparing them with the known reference height map (“ground659

truth”) z∗.660

For these tests, the images f , g, w, and z∗ were reduced to 256 × 256661

samples. The maximum number of iterations κ at scale 0 was set respectively662

at 50 and 20 for the MS and MG integrators, and to the default 50 and 500663

iterations for DT and DL. The absolute accuracy of each computed map z664

was quantified as the standard deviation of the difference η = z[w] − z∗[v],665

weighted by w[v]. The relative accuracy was quantified as η/R, where R666
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is the standard deviation of the reference height map z∗, also weighted by667

w[v]. These values are summarized in tables 4–5.668

Table 4: Absolute and relative root-mean-square errors η and η/R of
each method for the test datasets, without noise.

Method η η/R η η/R η η/R

spdome mixwav cbabel

AT 1.82 5.2% 0.89 2.3% 0.02 0.1%

AM 0.58 1.6% 0.46 1.2% 0.02 0.1%

DT 0.05 0.2% 0.02 0.0% 4.51 18.55%

DL 0.04 0.1% 0.67 0.0% 19.90 102.2%

MS 0.19 0.5% 0.36 0.9% 25.31 134.8%

MG 0.04 0.1% 0.02 0.0% 0.03 0.0%

cpiece bebust dtbust

AT 0.15 0.3% 1.59 11.07% 0.64 2.5%

AM 0.15 0.3% 0.30 2.0% 0.71 2.8%

DT 0.89 17.8% 1.62 10.9% 0.46 1.8%

DL 4.32 104.3% 1.28 8.8% 5.46 23.6%

MS 5.26 138.4% 1.02 6.4% 2.99 12.4%

MG 0.00 0.0% 0.87 5.4% 0.39 1.5%
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Table 5: Absolute and relative root-mean-square errors η and η/R of
each method for the test datasets, with 30% of Gaussian noise

added.

Method η η/R η η/R η η/R

spdome mixwav cbabel

AT 3.30 9.8% 4.75 13.0% 0.80 3.0%

AM 0.64 1.8% 0.51 1.3% 0.86 3.3%

DT 0.46 1.3% 0.37 0.9% 12.47 58.6%

DL 0.48 1.4% 0.92 2.4% 24.36 129.7%

MS 0.34 0.9% 0.44 1.1% 25.36 135.1%

MG 0.39 1.1% 0.34 0.9% 0.76 2.9%

cpiece bebust dtbust

AT 0.55 10.0% 1.94 13.9% 1.22 4.9%

AM 0.54 9.9% 0.40 2.7% 0.71 2.8%

DT 1.46 30.2% 1.21 8.2% 1.21 4.9%

DL 4.46 114.3% 2.26 15.5% 9.86 45.1%

MS 5.25 137.9% 0.90 5.6% 2.98 12.3%

MG 0.46 8.7% 0.93 5.8% 0.59 2.3%

670

Note that the topological multi-scale method described in this article (MG =671

TMG2) is generally more accurate than the other five methods tested, except672

that AM got a smaller relative error (2.0% versus 5.4%) on the bebust dataset.673

We observed also that our previous uniform-grid multi-scale method MS674

failed on the datasets cbabel, cpiece, and dtbust, because of loss of con-675

nectivity at the smallest levels of the pyramid. The iterative method DL of676

Quéau and Durou failed on the same datasets, too; while their DT method677

did badly on cbabel and cpiece. With all other data and method combi-678

nations, the solution obtained was fairly accurate. The results of the most679

significant failure cases are shown in figure 11–13.680

All methods, including ours, were fairly sensitive to noise on the cpiece681

dataset, presumably because any gradient noise on the narrow bridges be-682

tween the three main regions implied a significant change on the relative683

heights of those regions. Noise also had a notable impact on the accuracy684

of AT and AM with the mixwav set, and of DT with the cbabel set.685
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DT

DL

MS

Figure 11: Failure examples: At left, the height maps z computed by
algorithms DL, DT, and MS on the dataset cpiece without noise. At
right, the absolute error maps z − z∗. Blue and orange hues in the
latter indicate that the computed height was below or above the
correct height, respectively.

686
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DT

DL

MS

Figure 12: Failure examples: Height maps z (left) and absolute error
maps z − z∗ (right) obtained with methods DL, DT, and MS on the
dataset cbabel with 30% of Gaussian noise.

687
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DT

DL

MS

Figure 13: Failure examples: Height maps z (left) and absolute error
maps z − z∗ (right) obtained with methods DL, DT, and MS on the
dataset dtbust with 30% of Gaussian noise.

688

6.3. Running times689

In order to evaluate the efficiency and scaleability of our algorithm, we690

measured the running time t(N) for the integration of two datasets (spdome691

and dtbust), each reduced from the original size 2048×2048 to various sizes692

N = n× n, with n = 64, 128, 256, 512, 1024, and 2048. For the multi-scale693

methods, we counted the computational time of all iterations performed in694

all scales.695

For the single-scale methods of Agrawal and Durou (AT, AM) and Quéau696

and Durou (DT, and DL), we considered only the the time needed to solve697

the linear system, since the pre-processing stages have linear computational698

cost which may be higher than that of solving the system itself. For this699

evaluation, we specified a maximum of 2 iterations at scale 0 for the direct-700

solving methods DT and DL. As for the multi-scale methods based on Gauss-701

Seidel iteration, we specified 50 for our previous method MS on regular grids,702

and 20 for our new method MG with differences mesh.703

The absolute times in seconds cannot be compared due substantial dif-704

ferences of programming language and libraries. Therefore, we focused on705
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how the computing costs scale with the size of the problem. The results are706

shown in figures 14 and 15 and table 6.707
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spdomeAT
AM
DT
   
DL
MS
MG
   
N1.5

N

Figure 14: Plots of the system solving time t(N), in seconds, as a
function of the total number of samples N = n× n, for the six
methods (AT, AM, DT, DL, MS and MG), on the spdome dataset. For
slope comparison, the plot also shows the functions αN (dashed)
and γN1.5 (dotted), for arbitrary coefficients α and γ.
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Figure 15: System solving time t(N), in seconds, for the six methods
on the dtbust dataset.
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Table 6: System solving time t(N), in seconds, for the six methods
on the spdome and dtbust datasets.

spdome

N AT AM DT DL MS MG

64 × 64 0.04 0.04 0.05 0.07 0.02 0.02

128× 128 0.17 0.15 0.22 0.19 0.09 0.10

256× 256 0.95 0.73 0.51 0.81 0.42 0.51

512× 512 6.28 4.41 3.13 5.34 1.70 2.07

1024 × 1024 45.36 29.24 16.98 22.05 5.22 8.43

2048 × 2048 351.04 194.06 119.93 95.32 21.92 30.88

dtbust

N AT AM DT DL MS MG

64 × 64 0.04 0.06 0.04 0.07 0.02 0.01

128× 128 0.09 0.11 0.09 0.18 0.08 0.08

256× 256 0.48 0.44 0.34 0.69 0.38 0.38

512× 512 2.17 2.24 1.79 4.70 1.53 1.67

1024 × 1024 13.16 13.80 10.26 19.83 5.27 6.40

2048 × 2048 92.51 89.46 72.78 79.54 21.10 25.03

710

Figures 14 and 15 show that the running time t(N) grows linearly with N711

for our multi-scale methods (MS and MG) and for the method DL of Durou et712

al.. For the other three methods (AT, AM, and DT), the running time grows713

proportional to N1.5, mostly due their use of a Cholesky-based sparse linear714

systems solver.715

7. Conclusions716

The main contributions of this article are a novel multi-scale gradient in-717

tegration method, based on irregular differences mesh (TMG2); and a method718

to convert a regular grid of discrete gradient data with localized uncertain-719

ties or missing data into such a mesh. The combination of the two methods720

can cope with non-uniform errors and gaps in the input gradient data, as721

well as (known) discontinuities in the height field, such as may be obtained722

through photometric stereo.723

We compared our TMG2 method with others found in the literature,724

through tests with synthetic and real data. In most tests, our method was725
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found to be asymptotically faster than state-of-the-art single-scale methods,726

and significantly more accurate. The use of meshes with arbitrary topol-727

ogy allows us to get the speed benefits of multi-scale Gauss-Seidel methods728

without the errors caused by region disconnection at coarser scales.729

Specifically, the running time and memory requirements of the TMG2730

method scale linearly with the numberN of input samples, while the running731

time of earlier methods, based on directly solving the Poisson equations,732

grow proportionally to N1.5. The TMG2 method can be easily parallelized to733

SIMD processing platforms (such as GPUs and FPUs) due the simplicity of734

the data structures and the use of local decimation and iteration methods.735

We expect that TMG2 will be attractive in any applications of gradient736

integration where speed, accuracy, and robustness are important; especially737

in the use of photometric stereo for industrial quality control, surveillance738

and biometric identification, remote sensing, stereo microscopy, and fast739

single-camera 3D scanning.740
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