
IEEE TRANSACTIONS OF IMAGE PROCESSING 1

A topological multi-grid method for integration of
two-dimensional meshes

Rafael F. V. Saracchini, Carlos A. Catalina, Jorge Stolfi, and Helena C.G. Leitão

Abstract—We describe a particular variant of the algebraic multigrid (AMG) method, which we call two-dimensional topological

multi-grid (TMG2), for solving Poisson-type problems such as surface gradient integration on meshes with arbitrary topology and

geometry, on the plane or other surface of low genus. The coarsening algorithm runs in linear time and produces a two-dimensional

mesh with the same underlying manifold topology but a guaranteed fractional reduction of the number of variables and equations. The

reduced mesh remains connected even if the original one had narrow bridges. We show that our algorithm outperforms other surface

gradient integrator algorithms for practically relevant cases, especially for poorly connected meshes.

Unlike Geometric multi-grid methods, we do not assume that the mesh nodes have specific positions (and therefore do not use their

positions and distances when reducing the mesh. The reduction algorithm uses only the topology of the mesh, which must be specified

explicitly (in the form of a circular ordering of the edges out of each node).

Index Terms—Photometric Stereo,Surface gradient integration, 3D Reconstruction, Computer Vision

✦

1 INTRODUCTION

The integration of a gradient map to yield a height map
is a computational problem that arises in several computer
vision contexts, such as shape-from-shading [1], [2] and
multiple-light photometric stereo [3], [4]. These methods
usually determine the mean surface normal vector within
each image pixel, from which one can obtain the height gra-
dient (the partial derivatives of the surface’s height Z with
respect to the spatial coordinates X and Y). Although this
information alone does not determine the absolute surface
heights, it can yield height differences between parts of the
same surface. This relative height information is sufficient
for many important applications, such as industrial quality
control [5], pottery fragment reassembly [6], surveillance
and customs inspections [7], face recognition [8], and many
others.

Abstractly, the gradient integration problem consists in the
determination of a unknown function Z(x, y) : R

2 → R

defined in a domain D ∈ R
2, given its gradient ∇Z =

(∂Z/∂x, ∂Z/∂y) in that region. That is, we wish to compute
Z such that

∂Z

∂x
(x, y) = F (x, y)

∂Z

∂y
(x, y) = G(x, y) (1)

for each point (x, y) within D, where F and G are two
known functions defined in D. This problem has a differ-
entiable solution if and only if

∂F

∂y
(x, y)− ∂G

∂x
(x, y) = 0 (2)

• Rafael Saracchni and Carlos Catalina are with the Department of Simula-
tion and Control, Technological Institute of Castilla y León,Spain.
E-mail: rafael.saracchini@itcl.es, carlos.catalina@itcl.es

• Jorge Stolfi is with the Institute of Computing, State University of
Campinas,Brazil.
E-mail: stolfi@ic.unicamp.br

• Helena C. G. Leitão is with the Institute of Computing, Federal Flumi-
nense University,Brazil.
E-mail: hcgl@ic.uff.br

for each (x, y) ∈ D. The left side of equation (2) is the curl
(rotational) of the vector field (F,G), thus the equation is
called the zero curl condition. Once the condition is satisfied,
the solution Z can be obtained in various ways. For a
rectangular domain D with lower corner placed at (0, 0),
for example, it can be obtained by the formula

Z(x, y) = C +

∫ y

0
G(0, v) dv +

∫ x

0
F (u, y) du (3)

where C is an arbitrary constant. Note that the degree of
freedom represented by C is an inherent characteristic of
the original problem, not a limitation of the method.

1.1 Computational difficulties

In practical contexts, the problem of computing the heights
from given slopes faces at least three difficulties. First, the
gradient data F,G is usually discretized, that is, given as
a finite set of gradient samples, each being an average of
the gradient ∇Z over some neighbourhood of a gradient
sampling point. Therefore, the height function cannot be
precisely determined. It can only be approximated by a
member of a finite-dimensional function space, defined by a
finite function basis. Such a function can be (and usually
is) uniquely represented by a finite set of discrete height
samples, each being the average of the height Z over some
neighbourhood of a height sampling point. Note that the
height sampling points may not coincide with the gradient
sampling points.

Second, the gradient data is usually contaminated with
noise arising from unavoidable measurement, quantization,
and computation errors. In some parts of the domain D, the
expected magnitude of the error may be so high that the
gradient is essentially unknown. In the case of photometric
stereo and shape-from-shading, for example, it is usually
impossible to determine the gradient wherever the scene’s
surface is affected by shadows or specular highlights, is

IEEE TRANSACTIONS OF IMAGE PROCESSING 2

too dark, or is poorly illuminated. Gaps (or large errors)
in the data will also arise wherever the actual height or
gradient functions are inherently indeterminate, e.g. where
the scene is highly porous, covered with hair-like structures,
or transparent.

Third, the height function Z(X,Y) of a real scene is usu-
ally discontinuous. In particular, it almost always has step-
like discontinuities, or cliffs, at the edges of solid objects. At
any sampling point that straddles those cliffs, photometric
stereo and other gradient acquisition techniques usually fail
to detect the (very large) gradient across the edge, and
return an incorrect gradient sample that gives no clue as
to the height of the cliff. See figure 1.

(a) (b) (c)

Fig. 1. A height map with cliff-like discontinuities (a),
its color-coded gradient map (b), as could be obtained
by photometric stereo methods, and a binary mask (c)
showing the location of the cliffs. Note that the
gradient map is oblivious to the cliffs, and gives no
clue as to which end of the ramp (if any) is at ground
level.

1.2 Contributions

Here we describe the a flexible integration method for dis-
cretized gradient data, suitable for photometric stereo and
other applications, that can cope with non-uniform errors
and gaps in the input gradient data, as well as (known)
discontinuities in the height field. The general approach of
the new method is similar to the multi-scale integrator de-
scribed previously by Saracchini et al. [9], but using irregular
and purely topological mesh in place of the rectangular grid
of gradient samples used by most methods, including that
one. It is a special case of the algebraic multi-grid (AMG)
approach, optimized for planar meshes and the gradient
integration problems, that preserves the connectivity even
in poorly connected cases. We will denote it by the acronym
TMG2, short for two-dimensional topological multi-grid integra-
tor.

The irregular grid allows TMG2 to overcome the princi-
pal limitation of previous multi-scale methods, namely the
possible disconnection of parts of the domain as the data is
reduced to coarser and coarser scales. When a rectangular
grid of data is sub-sampled, any gaps or indeterminacies
will persist in the smaller grid, and will occupy a propor-
tionately larger area in it. Eventually these growing data
gaps may completely surround some part R of the domain.
Specifically, a band of well-defined samples that is t grid
steps wide and surrounded by data gaps will disappear
after k ≈ log2(t) coarsening steps. See figure 2.

Fig. 2. Example of region disconnection in grid-based
multi-scale integration. On top: perspective view of a
height map Z = Z(X,Y) with discontinuities. At
middle: derivatives F (0) = ∂Z/∂X and
G(0) = ∂Z/∂Y sampled on a 256× 256 grid and
256× 256 binary mask W (0) showing the location of
the height discontinuities in the domain (in black).
Bottom: the maps F (4), G(4), and W (4) resulting from
4 steps of filtering and sub-sampling. Note that the
central disk has become disconnected from the
surrounding areas.

When a region R becomes disconnected at some scale k,
the height of R relative to the rest of the surface cannot
be determined from that data, not even approximately.
Therefore, height map Z(k) computed at that scale will not
be a good starting guess for the iteration at the next finer
scale, and it may take many iterations to recompute at scale
k to adjust the height R inside.

2 RELATED WORK

A brief review and classification of gradient integration
methods for photometric stereo was provided by Sarac-
chini et al. [9] and by Durou et al. [10], [11]. To summarize,
most algorithms for this problem use one of four main
techniques: path integration [12], [13], [14], [15], integration
via Fourier transform [16], [17], direct solving of system of
linear equations that discretize the Poisson equation [2], [18],
[19], [20], [21], by Gaussian LU or Cholesky factorization;
and local iteration [2], [9], [22], [23] by Gauss-Seidel or similar
methods. Durou et al. [10] proposed the classification of
integrators accordingly with five main properties:

• Fastness: the integration process is aimed to be as fast
as possible.

• Robustness: capability to recover an acceptable re-
construction by a normal map affected by Gaussian
noise.

• Free boundary: capability to recover an accurate sur-
face with unknown boundary conditions.

• Discontinuity: the method should be able to deal
with depth discontinuities and occlusions without

IEEE TRANSACTIONS OF IMAGE PROCESSING 3

segmenting the scene in separate parts without dis-
continuity.

• Rectangular domain: the integrator should be able to
operate with a non-rectangular domain D.

A sixth lesser property defined by Durou is the capability
to retrieve adequate results without fine tuning of the algo-
rithm parameters (coefficients, number of iterations, etc.). So
far, only one method is reported to satisfy this criteria and
able to deal with discontinuities, which is the path-based
integrator of Fraile and Hancock [14], which is extremely
sensitive to measurement noise.

Local iteration methods had been demonstrated the most
adequate for photometric stereo, because they are able to use
Poisson or Krylov equations, even with Laplacian estimators
that take into account missing or unreliable gradient data
at each sampling point, satisfying most of the aforemen-
tioned criteria. Additionally, these methods can deal with
moderately non-linear equations in the same iterative loop,
without explicit linearisation (as in the Newton-Raphson
method). They also demand less space: their memory con-
sumption grows proportionally to N whereas direct solving
methods seem to require space proportional to N1.15 even
with good sparse system solvers [9].

The main disadvantage of local iteration methods is the
potentially slow rate of convergence. As explained in [9],
each iteration requires only O(N) operations, but the num-
ber of iterations needed to reduce the initial error E bellow
a tolerance ε is on the order of N log(E/ε), which implies a
total processing time of N2 log(E/ε). This convergence can
be accelerated by the multi-scale approach, as suggested by
Terzopoulos [24], [25]. In this approach, the original gradient
data F,G is properly sub-sampled to give F ′, G′ a lower
resolution scale. This data is integrated recursively to yield
a height field Z ′ at the same resolution. This coarse solution
is then interpolated to give the initial guess for the iterative
computation of the desired solution Z .

The multi-scale iterative method developed by Sarac-
chini et al. [9] is competitive in speed with Fourier based
integration, while still being able to cope with missing data,
non-uniform error, and height discontinuities. However, the
multi-scale approach fails to retrieve proper height map
estimates within an acceptable number of iterations if the
binary mask is susceptible to disconnection in smaller scales
of the multi-scale pyramid.

Quéau et al. [23] follows a energy minimization ap-
proach, proposing the usage of 3 minimization strategies
(weighted least-squares, Total Variation and L1 optimiza-
tion) inspired by image de-noising techniques. This ap-
proaches aims to detect non-differentiable elements of the
surface without a priori detection of such regions computing
automatically their weights, and is able to deal with certain
cases of surface discontinuity.

More recently Breuß et al. [26] proposed the usage of
a Fast-Marching method in order to provide a first ap-
proximation for iterative Poisson-based and Krylov-based
solvers. Their FM integrator is very fast and with very little
memory overhead compared with direct solvers, however,
its computed surface is reportedly less accurate than the
results retrieved by the previously mentioned approaches.

3 WEIGHTED DIFFERENCES MESH

Our contribution is the representation of the Poisson-type
problem as a weighted differences mesh, which consists in a
directed graph G with vertices V G and directed edges E G,
where each vertex v is associated to a unknown value z[v],
and each edge e is associated with two numerical values:
the difference d[e] and the weight w[e].

By using a planar mesh instead of a regular grid, we
can preserve the connectivity of the gradient data while
reducing the spatial resolution. Moreover, even though the
data is initially acquired in the form of a regular grid of
pixels, the gradient sampling points may become irregularly
spaced when the data is subjected to optical rectification,
perspective correction and mosaic composition.

The d[e] parameter is the estimated difference z[v]− z[u]
between the values of the destination vertex v = DST(e)
and the source vertex u = ORG(e) which corresponds to the
derivative between the sampling points u and v. The weight
of the edge w[e] ∈ R

∗ which express the reliability of d[e].
More specifically, we assume that the edge difference in-
cludes a Gaussian measurement error, with expected value
zero and variance proportional to 1/w[e]. Note that edges
with weight zero are not added to the graph, since they do
not provide any information.

By definition, for each directed edge e in the weighted
mesh, the reverse edge SYM(e) is also present with
d[SYM(e)] = −d[e] e w[SYM(e)] = w[e]. However when
drawing the mesh,only one of those edges are represented.
See figure 3.

5:5

-5:5

0:5

0:8 -2:3

0:21:6 1:5

Fig. 3. A small weighted differences mesh. The edge
labels are the pairs d[e] : w[e]. Note that only one of
the edges e, SYM(e) are illustrated.

We say that a mesh is simple if it does not have parallel edges
(two or more edges with same source and destination). In a
simple mesh, we can identify each edge e with the ordered
pair (u, v) of its source and destination vertices . In this case,
we can denote d[e] also as d[u, v] and w[e] by w[u, v].

3.1 Mesh integration

A weighted mesh G can be interpreted as a system of edge
equations, the linear equations

z[DST(e)]− z[ORG(e)] = d[e] (4)

for each directed edge e. The problem of mesh integration is
to compute the most probable value z[v] for each vertex v,
given the parameters d[e], w[e] of each edge e.

IEEE TRANSACTIONS OF IMAGE PROCESSING 4

It is evident that each connected component of G can be
treated as a different instance of this problem. Thus we will
assume that G is always connected graph. Moreover, since
the equations (4) depends only on the value differences, a
solution for a connected mesh have one and only one degree
of freedom: an additive constant C.

A set of values z is said tension free if all equations (4) are
satisfied exactly. This is the case only and only if the sum
of differences of edges along any directed cycle is zero. This
property is equivalent to the the zero curl condition for the
continuous integration problem of section ??. In particular,
if the mesh has only one simple path between two vertices
(that is, a tree), it always has a tension free solution.

3.1.1 Path Integration

If the mesh admits a solution free of tension, z[v] can be
computed by choosing an arbitrary spanning tree T for G,
associating an arbitrary equation for a given vertex v0 and
using equation (4) to compute the heights of other vertices
in increasing distance order from v0 along T . Note that
the weights of the edges are irrelevant in such case. This
algorithm also is the irregular mesh version of the sample
integration formula 3.

3.2 Vertex equilibrium equation

If G has cycles, however, the system of equations (4) is
overdetermined. In such case, it is almost impossible that
there is a tension free solution; that is, it is impossible
to satisfy all the edge equations at same time. Given the
assumption of independent Gaussian measurement errors
in the edges, the Bayesian analysis says that the most
probable set of values z is the solution by least squares of the
system (4); that is, the values z that minimize the quadratic
discrepancy function

Q(z) =
∑

e∈E G

w[e] (z[DST(e)]− z[ORG(e)]− d[e])
2

(5)

If we apply the path integration algorithm in this case,
we will obtain an approximate solution which depends on
the choise of the initially chosen vertex.

Suppose that the mesh G is simple and let G[u] be the
set of vertices adjacent to the vertex u ∈ G. The function Q
is minimized when each vertex u is in equilibrium; that is,
if only and only if we have

∑

v∈G[u]

w[u, v] (z[v]− z[u]− d[u, v]) = 0 (6)

We can write the equation (6) as

z[u] =
1

wt[u]

∑

v∈G[u]

w[u, v](z[v]− d[u, v]) (7)

where
wt[u] =

∑

v∈G[u]

w[u, v] (8)

In another words, the equilibrium occurs when z[u] is the
weighted average of z[v] − d[u, v] of all neighbours v of u,
where each neighbour is weighted by w[u, v]. The solution

z is tension-free if all the terms z[v]− d[u, v] have the same
value. The equation (7) can also be writen as

z[u]−
∑

v∈G[u]

λ[u, v]z[v] =
∑

v∈G[u]

λ[u, v]d[u, v] (9)

where λ[u, v] is w[u, v]/wt[u] is the relative weight of v
between the neighbours u.

3.3 Physical analysis

The following mechanical analogy can help to understand
the problem: each vertex v is modelled as a horizontal plate
without weight which is free to move vertically, but cannot
move horizontally or rotate. The value z[v] is the height
value of said plate. Each edge e = (u, v) is modelled as a
ideal vertical spring with rigidity coefficient w[e], connected
to the plates u and v such that it apply a vertical force with
magnitude w[e](z[v] − z[u] − d[e]); that is, the spring tries
to force the distance z[v] − z[u] to be equal to d[e]. The
value z[v] which minimizes Q(z) is a situation of mechanical
equilibrium, where the total force between each plate is
zero. This can be seen, since the potential energy of the
springs is 1

2Q(z), and the system will be in equilibrium (no
forces actuating in each vertex) when its potential energy is
minimum. In particular, the solution z is free of tension if
the Q(z) is zero, that is, if each spring length is equal to its
relaxed length.

Another analogy for this mathematical problem is an
electric circuit where each vertex v is a conductive node, the
variable z[v] the electrical potential of the node (in volts) and
each edge (u, v) a battery with voltage d[u, v] and internal
resistance 1/w[u, v] (in ohms) connected to the nodes u and
v. Thus, the current (u, v) (in amperes) that arrives in u
by the edge [u, v] is −w[u, v](z[v] − z[u] − d[u, v]). The
functional Q(z) is the electrical power dissipated by the
circuit. Equation (6) becomes then the Kirchoff law, which
is satisfied when the circuit is electrical equilibrium and the
total current entering and exiting each circuit is zero.

3.4 Matrix form

In order to express the problem in a matrix form, let
v1, v2, . . . , vn, the vertices of G, in arbitrary order, and
e1, e2, . . . , em a list of directed edges from G in arbitrary
order, which has only one directed version of each non
directed edge. Let also,

• Am×n be an incidence matrix of G such that Akj is
+1 if the vertex vi is the destination of the edge ek,
−1 if vi is the source of ek, and zero otherwise;

• W be a diagonal matrix m × m such that Wjj =
w[ej];

• d be a column vector of m elements such that dj =
d[ej];

• z be a column vector of n elements such that zk =
z[vk];

for each i, j ∈ {1, . . . ,m} and k ∈ {1, . . . , n}. The functional
Q can be then expressed as the matrix product

Q(z) = (Az − d)T
W(Az− d) (10)

IEEE TRANSACTIONS OF IMAGE PROCESSING 5

Where T denotes a matrix transposing operator. The vector
z that minimizes Q can be computed by differentiating this
formula with respect to each zk and equating it to zero. In
matrix form, the equations are

Mz = b (11)

where

M = A
T
WA (12)

and

b = AWd (13)

The solution of system (11) can be then computed by the
Gauss-Seidel or direct solving methods.

4 CONVERTING A DISCRETIZED GRADIENT GRID

TO A WEIGHTED MESH

In this section we describe the conversion of the gradient
data from a uniform rectangular grid to the graph format.

4.1 Discretizing Z

In the Poisson-based approaches, both sides of equation (1)
are derived, giving us the equation

L(Z)(x, y) = H(F,G)(x, y) (14)

where

L(Z) =
∂2Z

∂x2
+

∂2Z

∂y2
H(F,G) =

∂F

∂x
+

∂G

∂y
(15)

In their discrete versions, the operators L and H of the equa-
tions (14) are replaced by the finite difference estimators L
andH (referred in the literature often as “Poisson kernels”).

In order to discretize the equation (14), the function Z
is represented by a Z map, a matrix z[u, v] placed in a
sampling point grid q[u, v]. To obtain compatible estimates
of the derivatives from both sides of the equation (1), we
suppose that the sample points q[u, v] are shifted by half-
pixel in relation to the gradient sampling points p[u, v] in
each axis. Specifically we assume that p[u, v] is the point
(u + 1/2, v + 1/2) ∈ R

2, whether q[u, v] is the point (u, v).
This convention is illustrated in the figure 4.

q[u, v]

q[u, v − 1]

q[u, v + 1]

q[u− 1, v] q[u+ 1, v]

p[u− 1, v − 1]

p[u− 1, v]

p[u, v − 1]

p[u, v]

Fig. 4. Gradient and Z sampling points adjacent to the
point q[u, v] = (u, v).

Therefore, if the derivative maps f, g have nx columns and
ny lines, we can assume that the domain D is the rectangle
[0, nx] × [0, ny] ∈ R

2. Each pixel [u, v] from the derivative
maps can be identified with the unit side square centred on
p[u, v] with q[u, v] and q[u + 1, v + 1] in opposite corners.
Note that the map z, on the hand, has nx + 1 columns and
ny + 1 lines, and we can suppose that each pixel z[u, v] is
a unit side square centred on the point q[u, v], which is a
vertex of the gradient grid.

In practice, the derivative maps f [u, v] and g[u, v] are
almost always the average of the derivatives ∂Z/∂x and
∂Z/∂y in the neighbourhood of the point p[u, v], computed
by a gradient sampling kernel, which should be symmetrical
relative to to p[u, v] and overlap partially the neighbour
kernels. In similar way, the computed z[u, v] will be an
estimate to the average Z around the point q[u, v], obtained
by another sampling kernel. The relationship between those
two kernels is outside of the scope of this paper.

We assume that the weight map is given in the form of a
w matrix of non-negative values, with the same dimensions
as f and g and in similar way, they are related to the points
p[u, v]. We assume that w[u, v] is zero always when the
points p[u, v] is outside the domain D. Only the relative
weight magnitudes are significant, that is, the results wont
be affected if we multiply all the weights by a positive scale
factor.

In order to improve the legibility of the formulas, we
will use the notation z◦◦ for a given sample z[u, v], and the
following notations for its four neighbours:

z−◦ = z[u− 1, v] z◦− = z[u, v − 1]
z+◦ = z[u+ 1, v] z◦+ = z[u, v + 1]

We will use also the following symbols for the interpolated
derivative values from our algorithm, from the maps f and
g, in the average edge points between q[u, v] and its four
neighbours:

f−◦ ≈
∂Z

∂x
(u− 1

2
, v) g◦− ≈

∂Z

∂y
(u, v − 1

2
)

f+◦ ≈
∂Z

∂x
(u+

1

2
, v) g◦+ ≈

∂Z

∂y
(u, v +

1

2
)

IEEE TRANSACTIONS OF IMAGE PROCESSING 6

We will denote w−◦, w+◦, w◦−, and w◦+ edge reliably
weights, assigned by our algorithm to the interpolated slopes
f−◦, f+◦,g◦− and g◦+, respectively. See figure 5.

z
◦◦

z
◦−

z
◦+

z
−◦

z+◦

z
−−

z++z
−+

z+−

f
−−

g
−−

w
−−

f
−+

g
−+

w
−+

f+−

g+−

w+−

f++

g++

w++

g
◦−

w
◦−

g
◦+ w

◦+

f
−◦

w
−◦

f+◦

w+◦

Fig. 5. Notation for the interpolated Z , gradient and
weight values around the point q[u, v].

In the unweighted form (that is, all the weights are 1)
, we can use the discrete operators L̃(z) and H̃(f, g) to
estimate L(Z) and H(F,G), where

L̃(z)[u, v] = + (z◦+ − z◦◦)− (z◦◦ − z◦−)
+ (z+◦ − z◦◦)− (z◦◦ − z−◦)

(16)

H̃(f, g)[u, v] = f+◦ − f−◦ + g◦+ − g◦− (17)

The discrete version of the equation (14) is then the set of
linear equations

L̃(z)[u, v] = H̃(f, g)[u, v] (18)

for each [u, v] in the domain z.
Note that the first term (z◦+ − z◦◦) in the formula (16)

is another estimate for the derivative ∂Z/∂x in the average
point (u + 1

2 , v) of the horizontal edge in the grid between
q[u, v] e q[u + 1, v], computed from the map z. This can
be compared with the first term f+◦ from the equation (17)
computed by the interpolation of the given map f . Similarly,
the other terms in the formula (16) are the estimates of the
numerical derivatives of Z , which can be compared with
the terms f−◦, g◦−, e g◦+ of the formula (17). Inspired in
this observation, we divided each equation (18) in the four
separated equations:

z+◦ − z◦◦ = +f+◦ z◦+ − z◦◦ = +g◦+
z−◦ − z◦◦ = −f−◦ z◦− − z◦◦ = −g◦−

(19)

In general, the system (19) obtained in this way is overde-
termined, since it has approximately 2N equations (after
eliminate repeated equations) with approximately N un-
knowns. We seek the approximate solution of this system by
the least squares criteria; that is, a map z which minimizes
the weighted sum of the square of differences between both
sides of the equation. In this sum, we use for each equation
the weight (w−◦, w+◦, w◦−) or w◦+ of the interpolated
edge data. In this way, the least squares solution of the

equations (19) are reduced to the solution of another system
of N linear equations with N unknowns. Each equation of
this system assert that each value z[u, v] is equal to the
weighted height of its four neighbours, increased by the
interpolated derivatives in the middle of its corresponding
edges:

z◦◦ = +
w−◦
W◦◦

(z−◦ + f−◦) +
w+◦
W◦◦

(z+◦ − f+◦)

+
w◦−
W◦◦

(z◦− + g◦−) +
w◦+
W◦◦

(z◦+ − g◦+)
(20)

In this formula, W◦◦ is the total vertex weight,

W◦◦ = W [u, v] = w◦− + w◦+ + w−◦ + w+◦ (21)

Note that only the relative values of the weights are mean-
ingful. Rearranging the equation (20) to separate the un-
known and known terms we obtain

−L(z)[u, v] = +z◦◦−
w◦−
W◦◦

z◦−−
w◦+
W◦◦

z◦+−
w−◦
W◦◦

z−◦−
w+◦
W◦◦

z+◦
(22)

and

−H(f, g)[u, v] = −w◦−
W◦◦

g◦−+
W◦+
w◦◦

g◦+−
w−◦
W◦◦

f−◦+
W+◦
w◦◦

f+◦
(23)

To compute the right side of the equation (23) we need
estimates of the derivatives for the mid point of each edge
of the grid. For example, we need the estimate g◦+ for the
derivative ∂Z/∂y in the mid point of the edge r = (u, v+ 1

2)
between q[u, v] e q[u, v+1]. In order to obtain such estimate
we use the four values ga = g[u − 2, v], gb = g[u − 1, v],
gc = g[u, v] and gd = g[u + 1, v], which are the derivatives
sampled around the points (u − 3

2 , v + 1
2), (u − 1

2 , v + 1
2),

(u+ 1
2 , v+

1
2) and (u+ 3

2 , v+
1
2), respectively. Note that the

distances (signed) of those points to r are − 3
2 , − 1

2 , + 1
2 and

+ 3
2 respectively. We will denote by wa, wb, wc and wd the

reliability weights of said values. See figure 6.

q[u, v + 1]

q[u, v]

gm

wm

ga

wa

gb

wb

gc

wc

gd

wd

Fig. 6. Interpolating the derivative ∂Z/∂y in the point
(u, v + 1

2).

Considering consecutive pairs of those four values, by linear
interpolation or extrapolation, we obtain three estimates for
the derivative ∂Z/∂y in r:

g− = (3gb − ga)/2
g◦ = (gb + gc)/2
g+ = (3gc − gd)/2

(24)

Given the interpretation of w[u, v] as the reciprocal of the

IEEE TRANSACTIONS OF IMAGE PROCESSING 7

variance of the noise in g[u, v], the weights of said estimates
will be

w− = 4/(9/wb + 1/wa)
w◦ = 4/(1/wb + 1/wc)
w+ = 4/(9/wc + 1/wd)

(25)

We then take the weighted average gm of those three esti-
mates and assign the appropriated weight wm:

gm =
w−g− + w◦g◦ + w+g+

w− + w◦ + w+

wm = w− + w◦ + w+

(26)

As said previously, all the samples which are situated out-
side the domain g receive zero weight, such that their values
are ignored in the computation. Note that any estimate g−,
g◦ or g+ which depends on a sample with zero weight will
have zero weight itself, thus it wont contribute to the final
result. In particular, if one or more of the weights are zero,
formulas 24 and 27 get simplified as follows:

TABLE 1
Corresponding average gradients and weights for

samples with zero weight.

Case Weighted average gm Weight wm

wa = 0
w◦g◦ + w+g+

w◦ + w+
w◦ + w+

wb = 0 g+ w+

wa = wb = 0 g+ w+

wa = wc = 0 − 0
wa = wd = 0 g◦ w◦

The remaining cases (wc = 0, wb = wd = 0, etc.) are
symmetrical to the above. It would not be safe expand the
list (24) with interpolations of non-consecutive values such
as (ga +3gc)/4. If the intermediary samples (gb in this case)
have low or zero weight, it can be a region of discontinuity
and the computed value will be invalid. If all the weights
w−, w◦ and w+ are zero, the final weight wm will be zero by
the formula (26). In this case, we define arbitrarily gm = g◦.
We will denote the functions (24–26) by

(gm, wm)← INTERPOLATE(ga, wa, gb, wb, gc, wc, gd, wd)
(27)

In order to obtain f+◦, the estimated value of ∂Z/∂x in
the mid point s = (u + 1

2 , v) of an horizontal edge, we use
this same function INTERPOLATE in the samples vertically
adjacent to the edge, that is, fa = f [u, v − 2], fb = f [u, v −
1], fc = f [u, v] and fd = f [u, v + 1] with their respective
weights. This same function is used to estimate g◦− and
f−◦.

5 TOPOLOGICAL MULTI-GRID INTEGRATION

The core of our algorithm is a decimation procedure which
removes a certain fraction of the vertices of the input mesh
G, and adding some bridging edges, producing a smaller
mesh G′. The vertices of G′ are a subset of V G, and the
edges of G′ are constructed so that they summarize the
weight and difference information contained in the corre-
sponding edges of G. The integration problem then is solved

recursively for the mesh G′, generating an estimate z′ for
its vertices. By interpolation of such heights we obtain a
initial guess z for the original mesh G. The heights z are
then adjusted by the iterative Gauss-Seidel method. The
recursion is interrupted when the graph z is reduced to a
single vertex v to which we can assign a zero value z.

In other words, we build a build a pyramid
G(0), G(1), . . . , G(m) of meshes where G(0) is the input mesh
G, G(m) is a single vertex v, and each mesh G(k+1) is
obtained by decimation of the previous mesh G(k). We com-
pute then the solutions z(m), z(m−1), . . . , z(0), in this order,
where z(m)[v] is zero, and each z(k) is obtained from z(k+1)

by interpolation and Gauss-Seidel iterations. The output of
the algorithm is then the map z(0). See figure 7.

G(0) G(1) G(13)

⇒ ⇒ . . .

⇓ ⇓ ⇓

⇐ ⇐ . . .

Z(0) Z(1) Z(13)

Fig. 7. Multi-scale mesh integration.

Formally, the algorithm is the recursive procedure
MSMESHINTEGRATE which the pseudocode given in the
figure 8. It receives as input the weighted differences mesh
G, the number of maximum iterations q and a tolerance ε,
and returns a vector of values z for V G.

Procedure MSMESHINTEGRATE(G, q, ε)
1. If #V G = 1 then

2. Let v be the single vertex in V G; do z[v]←
0;

3. else
4. G′ ← DECIMATE(G);
5. β ← #V G′/#V G;
6. z′ ← MSMESHINTEGRATE(G′, q/

√
β, ε
√
β,);

7. z ← INTERPOLATE(z′, G);
8. z ← SOLVESYSTEM(z,G, q, ε);

9. Return z.

Fig. 8. Main procedure of the multi-scale integrator for
weighted difference meshes

5.1 Mesh decimation

The procedure DECIMATE called in the step 4 receives
a simple connected and planar mesh G and returns a
smaller mesh G′ also simple, planar and connected. Since
the procedure DECIMATE always returns a connected mesh,
the connectivity and planarity of the original mesh is also
preserved at all levels of the multi-scale pyramid. The al-
gorithm MSMESHINTEGRATE is therefore immune to prob-
lems caused by premature loss of connectivity and works
even if the original mesh has a region connected to the rest
only by a single path.

IEEE TRANSACTIONS OF IMAGE PROCESSING 8

The DECIMATE procedure first partitions V G in a set R
of vertices to be removed, and a complementary set K of
vertices to be kept. The set R is a maximal subset of in-
dependent (pairwise son-adjacent) vertices with maximum
degree 6. To achieve this goal, the procedure use an attribute
mark for each vertice, which can have 3 possible states:
REMOVE, KEEP and BLANK. Initially every vertex is marked
as BLANK. For each degree k, from 1 to 6, the procedure
scans sequentially all the vertices that are in BLANK state.
When a vertex of degree k is found, it is marked as REMOVE

and all its neighbours which still BLANK are marked as
KEEP. In the end, the set R consists of all vertices marked
as REMOVE, and K has all the vertices marked as BLANK or
KEEP.

After defining the sets K and R , the vertices in R are
removed from G. Every time that a vertice u is removed,
the edges connected to u are also removed. If u is of degree
1, no aditional action is needed. If u has degree greater or
equal than 2, new edges are added to G′, connecting the
neighbours of u. Note that all those vertices are in K and
therefore they will be always vertices of G′. The extremities,
weights and differences of the new edges are chosen such
that the solution z′[v] for the mesh G′ is close to the solution
z[v] for each vertice v ∈ K .

More precisely, let k be the degree of u in G; let
e0, e1, . . . , ek−1 the edges connected to u in counter-
clockwise ordering, and let v0, v1, . . . , vk−1 the correspond-
ing destination vertices. Let wi the weight of the edge ei
and di its difference. It is easy to show that the solution z′

for each G′ is a subset of the solution z of G, if for each pair
i, j, we added an edge e′i,j from vi to vj

d′ij = dj − di w′
ij =

wiwj

wt
(28)

where wt is the sum of weights w0, w1, . . . , wk−1. This
operation — the removal of u, every edge ei connected to u
and the creation of the edges e′ij between the neighbours of
u — we denote star-clique swap . In particular, if the vertex u
has degree k = 2, the swap will only add a new pair edges
e′01 e e′10. If the degree k is 3, only the edges e01, e′12, e′02 and
their reverses will be added. In both cases the planarity of
the edge is preserved.

However, if k is greater or equal than 4, the addition
of every k(k − 1) edge e′i,j would make G′ non-planar
and therefore it would interfere severely with the algorithm
efficiency. Therefore when k ≥ 4, we add only the edges
e′i,i+1 which connects the successive vertices vi e vi+1 for
i ∈ {0, 1, . . . , k − 1} in a cycle, as well its reverse edges
(where the indices are computed by module k). We will
denote this operation as star-cycle swap. The differences
d′i,i+1 between such edges are given by the formula (28),
that is:

d′i,i+1 = di+1 − di (29)

In other hand, the weights w′
i,i+1 are given by distinct

formulas, according with the degree k, given in the table 2.

TABLE 2
Formulas for the weight w′

01 if the new edge
e′01 = (v0, v1) created by the star-cycle swap, for each
degree k. The same formulas are valid for each other
edge e′i,i+1, except by the indices which are increased

by i module k.

k w′
01

2 w0w1/wt

3 0.5(w0w1 + w1w2)/wt

4 (w0w1 + 0.5(w0w2 + w1w3))/wt

5 (w0w1 + 1.1690(w2w4 + w0w2 + w1w4))/wt

6 (w0w1 + 2w5w2 + 1.5(w5w1 + w0w2))/wt

In contrast with the star-clique swap, the star-cycle swap do
not ensure that the values determined by the mesh G′ are
exactly the same as the determined by the mesh G. In fact,
it is not possible to retrieve an exact equivalence adding
only a subset of edges e′ij of the clique, if the weights and
differences are computed local formulas (that is, dependent
only on the edges ei). It does not seem possible to compute
the proper values of di and wi without analyzing the entire
G mesh and thus solving the integration problem.

However, our experiments showed that adding only the
k edges from the cycle, with the weights shown in table 2,
the solution z′ of the mesh G′ has the correct low frequency
terms of the solution z of G. This implies that the errors
between z′ and the derived solution z are highly localized,
and can be removed with a few Gauss-Seidel iterations.

The star-cycle swap can create parallel edges, which can
be either new edges added by star-cycle swaps on distinct R
vertices or edges from G that have both extremities within
the set K and thus were not removed. Therefore, after
all the star-cycle swaps have been applied, the procedure
DECIMATE replaces every group of edges with same source
and destination for a single equivalent edge. In particular, if
the edges e′ and e′′ have the same source and destination,
they are substituted by a single edge e with the following
attributes

w[e] = w[e′] + w[e′′] d[e] =
w[e′]d[e′] + w[e′]d[e′]

w[e′] + w[e′′]
(30)

This process is repeated until there are no parallel edges. It
is easy to see that this process does not change the solution
z defined by the equations (7).

5.2 Interpolation

Once the solution z′ is obtained for the reduced mesh G′

(step 6), it is converted into a initial guess of z to the com-
plete mesh G by the procedure INTERPOLATE(step 7). Ini-
tially, for each vertex v in K (which exists in both meshes),
we set z[v] ← z′[v]. Then, for each vertex u in R (which
exists only in G), we compute z[u] by the equation of vertex
equilibrium (7). Note that each neighbour v ∈ G[u] belongs
to K , and therefore its height z[u] is already determined.

5.3 Iterative adjustment

The initial estimate z computed by INTERPOLATE is used
as initial guess for the procedureSOLVESYSTEM (step 8)

IEEE TRANSACTIONS OF IMAGE PROCESSING 9

used by the Gauss-Seidel algorithm. Each iteration of
SOLVESYSTEM examines each vertex u ∈ V G and uses the
equation (7) to re-compute its value z[u] from the current
values z[v] of its neighbours. The procedure ends after a spe-
cific number of iterations κ, or when the variation between a
value z[u] from a iteration to another is smaller than a given
tolerance ε, for each vertice u, whichever happens first.

Note that for each level of recursion, the limit κ to the
number of iterations is increased by a factor 1/

√
β, and the

tolerance reduced by
√
β (step 6); where β = # E G′/# E G

is the mesh reduction factor achieved by DECIMATE (step 4).

5.4 Algorithm Analysis

Correctness The star-cycle swap and the collapse of par-
allel edges preserves the planarity and connectivity prop-
erties of the graph, such that in all recursive calls of
MSMESHINTEGRATE the mesh G satisfies such conditions.
Additionally, the vertex equations (7) are dominated by the
diagonal, thus the application of the algorithm at the scale
0 with proper values of κ and ε converges to the unique
solution z = z(0) of those equations, independently of the
initial estimate obtained by the decimated mesh G(1).

Time and space The efficiency of the algorithm depends on
the reduction factor β obtained by the procedure DECIMATE

and the number of Gauss-Seidel iterations needed in each
level. Let N = #V G,Nk = #V G(k), M = # E G,Mk =
E G(k). Let β̂ the largest value of β observed in all mesh

reduction steps. If β̂ < 1 then the maximum scale m will
be log1/β̂ N = O(logN) and the total Ntot of vertices of all

meshes will be at maximum N/(1− β̂) = O(N).
The planarity of the mesh G ensures that the upper limit

for β̂ is smaller than 1. Since G is a simple planar graph, it is
known that M ≤ 6N and G has at maximum N/7 vertices
with degree smaller or equal than 6. The same conclusions
are valid to G(k), N (k) and M (k). From those facts, it is
possible conclude that the theoretical limit is β̂ ≤ 41/42 ≈
0.976 [27]. Therefore M is at maximum 20 log2 N and Ntot is
at maximum 42N . In practice, however, the reduction factor
β is approximately 0.6 in most cases, which gives M ≈
1.4 log2 N and Ntot ≈ 2.5N .

The amount of memory required by the algorithm is
dominated by the data structure which represents each
mesh G(k). A simple representation which suffices for our
purposes consists in a edge table with 2Mk entries, each one
containing the destination, weight and difference of each
directed edge G(k), ordered by the source vertex; and one in-
dex table with Nk entries, which stores for each vertex v, the
index, the first edge in the edge table with source v. The total
storage space is therefore at maximum Nk+2×3Mk ≤ 19Nk

words per mesh G(k), and at maximum 19Ntot ≈ 47.5N
words for every mesh in the pyramid.

The planarity condition also ensures that the decimation
algorithm finishes in time O(Nk + Mk) = O(Nk) for each
level k. Therefore all the pyramids are built in total time
O(Ntot) = O(N). The time necessary for a single iteration
of the Gauss-Seidel at the level k is Θ(Nk + 2Mk) =
Θ(Nk), and the number of iterations executed at this level
is (Nβ̂k)(κ/β̂k/2) = Nβ̂k/2 which implies total time of

O(N/(1 −
√

β̂)) = O(N).

Convergence speed As in the work of Saracchini et al. [9],
this algorithm exploits the fact that a Gauss-Seidel iteration
converges rapidly if the error consists mostly of high fre-
quency spatial errors. When the mesh is decimated, the high
frequency components are mostly suppresed, while the low
frequency components have their wavelength halved. Thus,
the solution z(k+1) recursively computed, after expanded
to a previous scale z(k) will be correct mostly in the low
frequency components with small details missing. Those
missing components will be recovered after a small number
of Gauss-Seidel iterations, which is largely independent
of N (k). The whole recursive process is fast because each
spectral component of the height map is computed in the
scale where its spatial frequency is low.

Unfortunately, this intuitive explanation is not easy to
formalize, much less easy to demonstrate theoretically, since
it needs a formulation of “frequency” in terms of graph
structure, which is not covered by the scope of this work.
However, the experimental tests demonstrate that conver-
gence is achieved after few iterations, even with instances
where other multi-scale methods fail.

6 TESTS

In this section we compare the cost and precision of our
topological multi-grid integrator (MG) with other published
methods. We consider only methods which are able to deal
with discontinuities and missing data, such as the Poisson-
based integrators presented by Agrawal et al. [19] such as
the M-Estimators(AM) and Diffusive Affine Transform(AT),
the multi-scale grid integrator of Saracchini et al. [9] and the
iterative methods presented by Queáu et al. [23], namely the
Isotropic Total Variation (DT) and L1 Functional (DL). We
opted to not test the integrator proposed by Breuß et al. [26]
since its source code was not available in the moment of
writing this paper, as well the fact that it is part of an initial
step for a Poisson or Krylov-based integrator, which could
be incorporated as part of the other iterative solvers.

The tested integrators are summarized in table 3.

TABLE 3
Tested integration methods.

Tag Description

AT Diffusive Affine Transform [19], [28]

AM M-Estimators [19], [28]

DT Isotropic Total Variation [23]

DL L1 Functional [23]

MS Weighted multi-scale on grid [9]

MG Weighted multi-scale on mesh

The algorithms provided by Agrawal and Durou were
implemented by the authors in Matlab. We modified
Agrawal’s algorithms to use the given weights, instead of
trying to estimate them from the f and g matrices. Our
algorithms were implemented in C, compiled with the Gnu
C compiler. Our test platform had a Intel I5-3470 at 3.2 Ghz
with 16GB of RAM memory. The Matlab codes were run
in Matlab in Windows 7 whether C programs were run in
Linux Debian 7.0. In order to avoid inconsistent results and
avoid the in-built paralellization of Matlab when computing

IEEE TRANSACTIONS OF IMAGE PROCESSING 10

the running times, we set the processor affinity of each
process to be bound to only one core of the CPU.

6.1 Test datasets

We used 6 test datasets. Four of them (spdome, mixwav,
cbabel, and cpiece) were obtained by sampling mathe-
matical functions. The bebust dataset was obtained from
a laser-scanned bust of Beethoven, a standard benchmark
in 3D modelling [29]. The dtbust dataset was obtained
from a live subject by the 3DMT scanner [30]. Note that
the datasets cbabel, cpiece, and dtbust have cliffs
where the gradient is undefined; and both bebust and
dtbust have extended regions where the gradient data is
not available. Particularly, dtbust has weakly connected
regions due occlusions and small sections with missing
data. For all models, the weight mask was created by hand
with an image editor, as a grayscale image where the cliffs
and undefined regions were marked in black over a white
background. See figure 9 and 10.

spdome mixwav cbabel

Fig. 9. The test datasets spdome, mixwav and cbabel,
showing the gradient maps f (top row) and g (second
row), the weight maps w (third row), and the correct z
height map (bottom row).

cpiece bebust dtbust

Fig. 10. Test datasets cpiece, bebust and dtbust.

We processed each dataset as given, and also after perturb-
ing the maps f and g by mixing them with 30% Gaussian
white noise.

6.2 Accuracy Tests

In the accuracy tests, we verified the quality of the com-
puted height maps comparing them with the ground-truth
height map. The maximum number of iterations κ was
set respectively at 50 and 20 for scale 0 for the MS and
MG integrator whether the DT and DL were set with their
default number of iterations and additional parameters
(respectively 50 and 500 iterations). The absolute accuracy
of each computed map was quantified as the weighted
standard deviation of the difference e between it and the
correct height map. The relative accuracy was quantified
as e/R, where R is the weighted standard deviation of the
correct map. These values are summarized in tables 4–5.

TABLE 4
Absolute and relative root-mean-square errors of each

method for the test datasets, without noise.
spdome mixwav cbabel

Method e e/R e e/R e e/R
AT 1.82 5.2% 0.89 2.3% 0.02 0.1%
AM 0.58 1.6% 0.46 1.2% 0.02 0.1%
DT 0.05 0.2% 0.02 0.0% 4.51 18.55%
DL 0.04 0.1% 0.67 0.0% 19.90 102.2%
MS 0.19 0.5% 0.36 0.9% 25.31 134.8%
MG 0.04 0.1% 0.02 0.0% 0.03 0.0%

cpiece bebust dtbust

AT 0.15 0.3% 1.59 11.07% 0.64 2.5%
AM 0.15 0.3% 0.30 2.0% 0.71 2.8%
DT 0.89 17.8% 1.62 10.9% 0.46 1.8%
DL 4.32 104.3% 1.28 8.8% 5.46 23.6%
MS 5.26 138.4% 1.02 6.4% 2.99 12.4%
MG 0.00 0.0% 0.87 5.4% 0.39 1.5%

IEEE TRANSACTIONS OF IMAGE PROCESSING 11

TABLE 5
Absolute and relative root-mean-square errors of each

method for the test datasets, with 30% of Gaussian
noise added.

spdome mixwav cbabel

Method e e/R e e/R e e/R
AT 3.30 9.8% 4.75 13.0% 0.80 3.0%
AM 0.64 1.8% 0.51 1.3% 0.86 3.3%
DT 0.46 1.3% 0.37 0.9% 12.47 58.6%
DL 0.48 1.4% 0.92 2.4% 24.36 129.7%
MS 0.34 0.9% 0.44 1.1% 25.36 135.1%
MG 0.39 1.1% 0.34 0.9% 0.76 2.9%

cpiece bebust dtbust

AT 0.55 10.0% 1.94 13.9% 1.22 4.9%
AM 0.54 9.9% 0.40 2.7% 0.71 2.8%
DT 1.46 30.2% 1.21 8.2% 1.21 4.9%
DL 4.46 114.3% 2.26 15.5% 9.86 45.1%
MS 5.25 137.9% 0.90 5.6% 2.98 12.3%
MG 0.46 8.7% 0.93 5.8% 0.59 2.3%

Note that the graph-based multiscale method described
in this article (MG) is more accurate than the other five meth-
ods tested. Note also that our previous uniform-grid mul-
tiscale method (MS) fails on the datasets cbabel, cpiece,
and dtbust because of loss of connectivity at the smallest
levels of the pyramid. The iterative methods DT and DL

had comparable accuracy with the direct-solving methods
for most cases, although they had issues with the weakly
connected datasets cbabel and cpiece even after reaching
convergence. All the integrators showed to be rather re-
silient to the presence of noise, and the main factor affecting
the results was the connectivity of the height map. The
results of the most significant failure cases are shown in
figure 11–13.

DT

DL

MS

Fig. 11. Failure case example: the height maps
computed by algorithms DL, DT, and MS on the dataset
cpiece without noise. Blue and orange hues on the
error maps show that the computed height was below
or above the correct height, respectively.

DT

DL

MS

Fig. 12. Failure cases of the dataset cbabel with 30% of
Gaussian nose.

DT

DL

MS

Fig. 13. Failure cases of the dataset dtbust with 30% of
Gaussian nose.

6.3 Computational costs

In order to evaluate the efficiency and scalability of our
algorithm, we measured the running time and the amount
of memory used in the integration of two datasets (spdome
and dtbust). The gradient data was sampled on uniform
grids of various sizes, from 64× 64 to 2048× 2048. For the
single-scale methods of Agrawal and Durou (AT, AM, DT,
and DL) we considered only the the time needed to solve
the linear system, since most of pre-processing stages have
linear computational cost which may be higher than solve
the system itself. Due the nature of iterative algorithms, we
set a fixed number of iterations: two iterations for DT and
DL and 50 and 20 iterations for MS and MG. See figures 14
and table 6.

For the multi-scale methods, we added the computa-
tional time for each set of iterations performed in all scales.
The absolute costs cannot be compared due substantial dif-
ferences of programming language and libraries. Therefore,
our focus is how the computing costs scale with the size of
the problem. The results show that the running time grows
like O(N) for both multi-scale methods (MS and MG) and
for DL. All other methods had their computational costs
growing as O(N1.5), mostly due their reliance in a Cholesky
sparse solver in later stages.

IEEE TRANSACTIONS OF IMAGE PROCESSING 12

 0

 50

 100

 150

 200

 250

 300

 350

 400

64128 256 512 1024 1280 1536 1792 2048

spdome (sec)AT
AM
DT
DL
MS
MG

Fig. 14. Plots of the system solving time for the four
single-scale methods (AT, AM, DT, and DL), the uniform
grid multi-scale method (MS) and the graph multiscale
method of this article (MG), for the spdome dataset.
Note that the plots are in function of n = N2 in order
to aid the visualization. The fitted curves are
αn2 = αN (full) and αn3 = αN1.5 (dotted) with the
best-fit coefficient α.

 0

 20

 40

 60

 80

 100

64128 256 512 1024 1280 1536 1792 2048

dtbust (sec)AT
AM
DT
DL
MS
MG

Fig. 15. Plots of the system solving time for the dtbust
dataset.

TABLE 6
Time costs for the six methods on the spdome and

dtbust datasets.
spdome

time

N AT AM DT DL MS MG
64 × 64 0.04 0.04 0.05 0.07 0.02 0.02
90 × 90 0.07 0.09 0.11 0.11 0.04 0.04

128 × 128 0.17 0.15 0.22 0.19 0.09 0.10
256 × 256 0.95 0.73 0.51 0.81 0.42 0.51
360 × 360 2.50 1.77 1.44 1.66 0.82 0.99
512 × 512 6.28 4.41 3.13 5.34 1.70 2.07

1024 × 1024 45.36 29.24 16.98 22.05 5.22 8.43
1280 × 1280 78.89 50.82 31.63 35.08 8.96 11.86
1536 × 1536 144.97 85.11 77.19 52.18 9.74 17.30
1792 × 1792 222.17 126.49 72.89 69.73 13.25 23.90
2048 × 2048 351.04 194.06 119.93 95.32 21.92 30.88

dtbust

time

N AT AM DT DL MS MG
64 × 64 0.04 0.06 0.04 0.07 0.02 0.01
90 × 90 0.05 0.07 0.06 0.09 0.04 0.03

128 × 128 0.09 0.11 0.09 0.18 0.08 0.08
256 × 256 0.48 0.44 0.34 0.69 0.38 0.38
360 × 360 1.03 1.01 0.74 1.33 0.79 0.80
512 × 512 2.17 2.24 1.79 4.70 1.53 1.67

1024 × 1024 13.16 13.80 10.26 19.83 5.27 6.40
1280 × 1280 23.41 22.59 19.80 32.82 8.12 9.80
1536 × 1536 40.98 38.34 33.12 47.31 9.19 14.38
1792 × 1792 59.17 57.98 44.50 59.93 16.18 19.12
2048 × 2048 92.51 89.46 72.78 79.54 21.10 25.03

7 CONCLUSIONS

The graph-based multiscale method MG described in this
article is asymptotically faster than state-of-the-art single-
scale methods, and extremely as accurate. Although slower
than an a uniform-grid multiscale method MS, it can cope
with poorly connected datasets that cause MS to fail. The
method has linear growth either in memory as running
times and can be easily parallelised to SIMD processing
platforms (such as GPUs and FPUs) due the simplicity of
its data representation. The algorithm currently was tested
only with the the Gauss-Seidel iterative solver, which has
inherent slow convergence. Although it needs very few
(in order of 10 or 20) iterations in the lower level of the
multi-scale pyramid to obtain acceptable results, it needs
a significant number of iterations to obtain marginal im-
provements regarding errors in a given scale. In a nearby
future we expect to make use of approaches to speed-up
the computation of initial guess, still keeping the linear
memory and time asymptotic costs, reducing even further
the number of needed iterations. One approach which may
have such potential is the Fast-Marching approach proposed
by Breuß et al. [26].

ACKNOWLEDGMENTS

We thank Jean-Denis Durou, Yvain Quéau and Amit
Agrawal, who kindly provided the code of their integrators,
test datasets for our tests as well their inspiring work in
the field. We also thank also the support given from CnPQ,
CAPES, FAPESP, EPSRC funding agencies and the Techno-
logical Institute of Castilla y León during the development
of this algorithm and writing of its manuscripts.

REFERENCES

[1] B. K. P. Horn and M. J. Brooks, Shape from Shading. Cambridge,
Mass.: MIT Press, 1989.

[2] B. K. P. Horn, “Height and gradient from shading,” Intl. Journal of
Computer Vision, vol. 5, no. 1, pp. 37–75, 1990.

[3] B. K. P. Horn, R. J. Woodham, and W. M. Silver, “Determining
shape and reflectance using multiple images,” MIT Artificial Intel-
ligence Laboratory, Tech. Rep. AI Memo 490, 1978.

[4] R. J. Woodham, “Photometric method for determining surface
orientation from multiple images,” Optical Engineering, vol. 19,
no. 1, pp. 139–144, 1980.

[5] M. L. Smith and L. N. Smith, Polished Stone Surface Inspection using
Machine Vision. OSNET, 2004, p. 33.

[6] M. Kampel and R. Sablatnig, “3D puzzling of archeological frag-
ments,” in Proc. of 9th Computer Vision Winter Workshop, D. Skocaj,
Ed., 2004, pp. 31–40.

[7] J. Sun, M. L. Smith, A. R. Farooq, and L. N. Smith, “Concealed
object perception and recognition using a photometric stereo
strategy,” in Proc. 11th Intl. Conf. on Advanced Concepts for Intelligent
Vision Systems (ACIVS), vol. 5807, 2009, pp. 445–455.

[8] M. F. Hansen, G. A. Atkinson, L. N. Smith, and M. L. Smith, “3d
face reconstructions from photometric stereo using near infrared
and visible light,” Computer Vision and Image Understanding, vol. In
Press, 2010.

[9] R. F. Saracchini, J. Stolfi, H. C. Leitão, G. A. Atkinson, and M. L.
Smith, “A Robust Multi-Scale Integration Method to Obtain the
Depth from Gradient Maps,” Computer Vision and Image Under-
standing, vol. 116, no. 8, p. 882–895, Aug. 2012.

[10] J.-D. Durou, Y. Quéau, and J.-F. Aujol, “Normal integration–part i:
A survey,” 2016.

[11] Y. Quéau, J.-D. Durou, and J.-F. Aujol, “Normal integration–part
ii: New insights,” 2016.

[12] Z. Wu and L. Li, “A line-integration based method for depth
recovery from surface normals,” Computer Vision, Graphics and
Image Processing, vol. 43, no. 1, pp. 53–66, 1988.

IEEE TRANSACTIONS OF IMAGE PROCESSING 13

[13] A. Robles-Kelly and E. R. Hancock, “Surface height recovery from
surface normals using manifold embedding,” in Proc. Intl. Conf. on
Image Processing (ICIP), 2004.

[14] R. Fraile and E. R. Hancock, “Combinatorial surface integration,”
in Proc. 18th Intl. Conf. on Pattern Recognition (ICPR’06) Volume 1,
2006, pp. 59–62.

[15] A. Agrawal, R. Chellappa, and R. Raskar, “An algebraic approach
to surface reconstruction from gradient fields,” in Proc. 2005
Intl. Conf. on Computer Vision (ICCV), 2005, pp. 174–181.

[16] R. T. Frankot and R. Chellappa, “A method for enforcing inte-
grability in shape from shading algorithms,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 10, no. 4, pp. 439–451, 1988.

[17] T. Wei and R. Klette, “Height from gradient using surface curva-
ture and area constraints,” in Proc. 3rd Indian Conf. on Computer
Vision, Graphics and Image Processing, 2002.

[18] G. D. J. Smith and A. G. Bors, “Height estimation from vector
fields of surface normals,” in Proc. IEEE Intl. Conf. on Digital Signal
Processing (DSP), 2002, pp. 1031–1034.

[19] A. Agrawal, R. Raskar, and R. Chellappa, “What is the range
of surface reconstructions from a gradient field?” in Proc. 9th
European Conf. on Computer Vision (ECCV), vol. 3951, 2006, pp. 578–
591.

[20] D. Reddy, A. Agrawal, and R. Chellappa, “Enforcing integrability
by error correction using ℓ1-minimization,” in Proc. 2009 IEEE
Conf. on Computer Vision and Pattern Recognition, 2009, pp. 2350–
2357.

[21] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From
few to many: Illumination cone models for face recognition under
variable lighting and pose,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 23, pp. 643–660, 2001.

[22] B. K. P.Horn, “Height and gradient from shading,” Massachusetts
Institute of Technology, Tech. Rep. AI Memo 1105, 1989.

[23] Y. Queau and J.-D. Durou, “Edge-Preserving Integration of a
Normal Field: Weighted Least-Squares, TV and L1 Approaches,”
in Scale Space and Variational Methods in Computer Vision, ser.
Lecture Notes in Computer Science, J.-F. Aujol, M. Nikolova, and
N. Papadakis, Eds. Springer International Publishing, 2015, vol.
9087, p. 576–588.

[24] D. Terzopoulos, “Image analysis using multigrid relaxation meth-
ods,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. PAMI-8, no. 2, pp. 129–139, Mar. 1986.

[25] ——, “The computation of visible-surface representations,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 10,
no. 4, pp. 417–438, 1988.

[26] M. Breuß, Y. Quéau, M. Bähr, and J.-D. Durou, “Highly efficient
surface normal integration,” in Proceedings of the Conference Algo-
ritmy, 2016, pp. 204–213.

[27] D. G. Kirkpatrick, “Optimal search in planar subdivisions,” SIAM
J. on Computing, vol. 12, pp. 28–35, 1983.

[28] A. Agrawal, “Matlab/Octave code for robust surface
reconstruction from 2d gradient fields,” Available from
http://www.umiacs.umd.edu/ aagrawal/software.html.
Accessed on 2010-05-01, 2006, see [19].

[29] Université de Tolouse, “Codes for photometric stereo,” Dataset
at http://ubee.enseeiht.fr/photometricstereo/ , accessed on 2016-
06-22, 2010.

[30] “3dmdface system,” Company page at
http://www.3dmd.com/3dmdface.html, accessed on 2010-04-22,
2010.

