
A Bucket Grid Structure to Speed Up Table Lookup in Gauge-Based
Photometric Stereo

Helena Cristina G. Leitão
Inst. of Computing, Fed. Fluminense Univ. – R. Passo da Pátria, 156, Niterói, RJ, Brazil

hcgl@ic.uff.br

Rafael Felipe V. Saracchini
Jorge Stolfi

Inst. of Computing, State Univ. of Campinas – Cx. P. 6176, 13083-970, Campinas, SP, Brazil
ra069320,stolfi@ic.unicamp.br

Abstract

In this paper, we show how to speed up the table lookup
step in gauge-based multi-image photometric stereo. In that
step, one must find a pixel of a gauge object, of known shape
and color, whose appearance under m different illumina-
tion fields is similar to that of a given scene pixel. This
search reduces to finding the closest match to a given m-
vector in a table with a thousand or more m-vectors. Our
speed-up method exploits the fact that the table is in fact
a fairly flat two-dimensional manifold in m-dimensional
space, so that the search can be efficiently solved with a
two-dimensional bucket grid structure.

1. Introduction

1.1. Variable-lighting photometric stereo

In variable-lighting photometric stereo (VLPS), the goal
is to determine the 3D geometry of a scene from a list of
m ≥ 3 monochromatic digital photos S1, .. Sm, all taken
with different lighting conditions but with the same pose
and viewpoint. As shown by R. J. Woodham in 1980 [8], by
analyzing the m pixel intensities Si[p] at any image point
p, one can recover the unit vector �s[p] that is perpendicular
to surface element which is visible at p. The third dimen-
sion (depth) can then be recovered by integration of this
data. This problem has attracted a lot of attention in recent
years [3, 5, 7, 11, 2, 10].

To perform the above analysis, one must have enough
information about the bidirectional radiance distribution
function (BRDF) of the surface, and about the light field
Φi in each image Si. The BRDF of the scene’s surface at

point p of the image is a function σ[p](�n, �u,�v) that gives the
apparent brightness of the surface when oriented with nor-
mal �n, viewed from the direction �v, and illuminated with
unidirectional light of unit intensity flowing in the direction
�u. (Note that we include the geometric light spread factor
max {0,−�u · �n} in the BRDF itself.)

1.2. Gauge-based VLPS

In the gauge-based variant of VLPS, the BRDF infor-
mation is indirectly given by m images G1, .. Gm of a light
gauge, a sample object of known shape and color; where
each gauge image Gi is taken under the same lighting con-
ditions as the corresponding scene image Si. (Depending on
the application, it may be convenient to include the gauge
object as part of the scene itself. In that case, each Gi will
be just a sub-image of Si.)

In this paper, we assume that all images S1, .. Sm have
been geometrically corrected, trimmed, and aligned, so that
each point p on their common domain S corresponds to the
same point on the scene’s visible surface. The same con-
dition is assumed for the gauge images G1, .. Gm, whose
common domain will be denoted by G. We also assume a
linear pixel value scale (with samples directly proportional
to physical light intensity). Finally, we assume that the sur-
face normal vector �g[q] is known for every point q on the
gauge’s images.

In its basic form, gauge-based VLPS is viable only if
all visible scene and gauge surfaces have the same finish
everywhere, except for variations in intrinsic color. That is,
the BRDF σ[p] of the scene at each image point p, and the
BRDF γ[q] of the gauge at any point q, must be multiples

of some fixed BRDF β̄:

σ[p](�n, �u,�v) = ∗
s[p] β̄(�n, �u,�v)

γ[p](�n, �u,�v) = ∗
g[p] β̄(�n, �u,�v)

(1)

The constant factors ∗
s[p] and ∗

g[q] in these formulas are the
intrinsic lightness or albedo of the scene and gauge sur-
face, respectively, at those points. Observe that the gauge’s
albedo ∗

g[q] and normal direction �g[q] must be known for all
q ∈ G; typically, one uses a spherical gauge with uniform
albedo, preferably white (∗

g[q] = 1 everywhere).
Another necessary condition for gauge-based VLPS is

that the BRDF β̄ must be dominated by wide-angle scatter-
ing, with no mirror-like reflection or sharp glossy scattering.
The standard example is the Lambertian BRDF,

β̄(�n, �u,�v) = max {0,−�u · �n} (2)

However, almost any BRDF β̄ will do, as long as it doesn’t
have impulse-like components (sharp peaks or ridges). For
simplicity, we will also assume that the the images are taken
under nearly parallel projection and illuminated by distant
light sources; so that the viewing direction �v and the lighting
conditions are the same at every point of S or G.

Gauge-based VLPS can be extended to multichannel
(e.g. RGB trichromatic) images, yielding a single normal
map �s[p] but a different albedo map ∗

sλ[p] for each spectral
band λ. The latter provide the illumination-independent in-
trinsic color of the scene at each pixel.

1.3. Fundamental equations

The key idea of gauge-based VLPS is that the intensity
of each point on a scene photo Si or a gauge photo Gi can
be analyzed into the product of two factors: the intrinsic
albedo, ∗

s or ∗
g (that depends only on the surface’s material

and finish) and the lighting factor, (that depends only on the
index i and on the surface’s slope, �s or �g). Specifically,

Si[p] = ∗
s[p] Li(�s[p])

Gi[q] = ∗
g[q] Li(�g[q])

(3)

Here, each Li is the shading function implied by the lighting
field Φi and the BRDF β̄. It maps each unit vector �n to the
apparent lightness of a white surface perpendicular to �n, and
is given by the formula

Li(�n) =
∫

S2
Φi(�u)β̄(�n, �u,�v) d�u (4)

The factor Φi(�u) is the intensity of the light flow that is in-
cident on the surface from direction �u. The uniform lighting
hypothesis allows us to assume that Φi(�u) does not depend
explicitly on the position on the surface, but only on the
light source’s direction �u.

Note that the value of Φi(�u) is irrelevant for directions
�u that point outwards from the local surface, or for points
that are not on the surface; so it is indeed plausible to have a
single function Φi for the whole scene, independently of the
local surface orientation. In particular, this lighting model
allows attached shadows, and is adequate for scenes con-
sisting of a single mostly convex object. On the other hand,
this model cannot account for projected shadows, radiosity
effects, or sources with uneven light distribution.

Note that, in this model, the intrinsic albedos ∗
g and ∗

s
and the normals �s and �g are distinct from each other and
vary from point to point, but are same for all i; whereas the
shading functions Li are the same for Si and Gi and are
constant over each image, but are different for each i.

If formulas (3) hold, then we can determine the normal
�s[p] at a point p of the scene images by finding a point in the
gauge images that reacts in the same way as p to changes
in lighting directions, except for the albedos ∗

s[p] and ∗
g[q].

More precisely, we must find q ∈ G such that the m-vectors

S[p] = (S1[p], S2[p], . . . , Sm[p])
G[q] = (G1[p], G2[p], . . . , Gm[p]) (5)

are multiples of each other. The vectors S[p] and G[q] are
called the observation vectors (OVs) of the points p and q.
Having located the matching gauge point q, we can recover
the normal vector �s[p] and albedo ∗

s[p] of the scene at p by
the formulas

�s[p] = �g[q] ∗
s[p] =

|S(p)|
|G(q)|

∗
g(q) (6)

This method will fail if there are two points q′, q′′ on the
gauge images which have different normals (that is, �g[q′] �=
�g[q′]) but collinear OVs (that is, G[q′] = αG[q′′] for some
scalar α). To avoid this problem, the number of images m
must be at least 3, and the light fields Φ1, .. Φm must be
sufficiently varied to break any such ambiguities. We will
assume that this condition is satisfied in what follows.

1.4. The table-lookup step

The most time-consuming part of gauge-based VLPS, as
outlined above, is locating the point q ∈ G such that S[p] is
a multiple of G[q]. If neither vector is zero, this is equiv-
alent to matching the observation signatures s[p] and g[q],
defined by

s[p] =
S[p]
|S[p]| g[q] =

G[q]
|G[q]| (7)

Here |·| is any norm of Rm, e.g. the Euclidean norm

|X| =
√∑m

i=1 X2
i (8)

Note that the position q is not meaningful by itself; it is only
used to associate the observation signature g[q] to the nor-
mal �g[q] and to the OV modulus •

g[q] = |G[q]|. Therefore,
we can replace the gauge images by a signature table, an
unordered set of triplets

T =
{

(g[q], �g[q], •
g[q]) : q ∈ G }

(9)

The computation of �s[p] then becomes a closest-match table
look-up problem, where we look for the element (g, �g,

•
g) of

the table T that minimizes the distance dist(g, s[p]).
The brute-force solution to this problem would be to scan

the table T, computing dist(g, s[p]) for each signature g in
it, while keeping track of the closest-matching entry. How-
ever, in order to provide a good coverage of all possible nor-
mal directions, the table T must have tens of thousands of
entries. Since the lookup must be repeated for each pixel of
the scene domain S, it may take tens of minutes to process
a single set of scene images with this method.

1.5. Previous work

Several techniques have been proposed in the literature
to speed up the table search step. Woodham himself [9, 10]
used a regular m-dimensional grid spanning the hypercube
[0, 1]m, with 2b cells along each axis, for some bit count b.
In the preprocessing phase, each gauge observation vector
G[q] was quantized with b bits per coordinate, yielding the
m-tuple of indices of some grid cell where the associated
normal vector �g[q] was stored. (Woodham assumed uni-
form albedos ∗

s = ∗
g, so there was no reason to normalize

the observation vectors.) In the lookup phase, each scene
OV S[p] was mapped to a table cell in the same way, and
the desired normal �s[p] was recovered from the grid. One
obvious disadvantage of this method is the size of the grid:
2mb entries, which is about 250,000 for m = 3 and b = 6.

Later works have proposed other general m-dimensional
nearest-point algorithms for this task. For instance,
Hertzmann and Seitz [4] use approximate nearest neigh-
bour(ANN) of Arya et al. [1]; while Zhong and Lit-
tle [11] use the locally sensitive hashing of Indyk and Mot-
wani [6]. However, all these methods have a common
shortcoming: they consider the set of all gauge signatures
G = {g[q] : q ∈ G } to be a generic cloud of points scat-
tered in m-dimensional space, and therefore use general m-
dimensional nearest-neighbor search algorithms — which
are inherently expensive in space and/or time [6].

2. Fast table searching with 2D bucketing

We now describe an algorithm to locate the best-
matching entry in the signature table, that exploits the pe-
culiar shape of the set G to achieve very fast look-up at a
modest space cost.

2.1. Shape of the signature table

The key observation for our improved method is that
the set G of all gauge signatures is essentially a two-
dimensional subset of Rm. Therefore, we can reduce the
problem to a two-dimensional nearest-point search, which
can be solved very efficiently by a two-dimensional bucket
grid scheme.

To understand the key observation above, note that, be-
cause of formulas (3) and (7), the observation signatures
s[p] and g[q] can be expressed as l(�s[p]) and l(�g[q]), re-
spectively; where l is the lighting signature function

l(�n) =
L(�n)
|L(�n)| (10)

and L(�n) = (L1(�n), .. Lm(�n)). Note that the function l,
that maps surface normals to lighting signatures, is defined
only on the hemisphere H of S2 consisting of the normal
directions that deviate less than 90 degrees from the viewing
direction �v. On the other hand, a good gauge object must
provide a fairly dense and uniform sampling of H (which is
why spheres are normally used for that purpose). It follows
that the set of gauge signatures must be a fairly dense and
uniform cover of K = l(H), the range of the function l.

Now, given our assumption that the gauge’s BRDF β̄
lacks the sharp spikes of mirror-like reflection, the shad-
ing factors Li(�n) given by formula (4) are continuous func-
tions of the surface normal �n. In fact, Li is typically fairly
smooth, with just a few broad and hardly-distinguishable
maxima. Furthermore, the gauge-based VLPS problem is
solvable if and only if the function l(�n) is invertible, i.e. for
every point v of Sm−1 there is at most one direction �n such
that l(�n) = v. If this condition holds, the range K of l is an
embedding of the hemisphere H into Sm−1. Finally, since
the observation signatures are contained in the positive or-
thant of Rm, the width of K , as seen from the origin of Rm,
is at most 90 degrees.

From these considerations, intuition suggests (and expe-
rience confirms) that the range K of l is a relatively flat
patch of a 2-dimensional manifold (surface) immersed in
Sm−1; and that the gauge’s observation signatures G must
be distributed over K with fairly uniform density.

2.2. The 2D bucketing scheme

In our method, the signature table T is preprocessed as
follows. We first compute the centroid b of G (seen as
a set of points of Rm), and two orthogonal unit vectors
u, v ∈ Rm that define its directions of maximum extent.
These vectors are found by computing the m × m coordi-
nate moment matrix M of the displacements g − b, for all
g ∈ G, and taking the eigenvectors associated to its two
largest eigenvalues. The point b and the vectors u, v define

a two-dimensional affine subspace P of Rm, the signature
projection plane, which is roughly coplanar with the set G.
The orthogonal projection onto P of a given observation
signature g will be denoted by ↓ g.

Next, we choose a regular grid of N ×N square cells on
the projection plane P . This grid is centered on the point
b, has its sides parallel to the vectors u and v, and is barely
large enough to contain the projection ↓g of any observa-
tion signature g in T. More precisely, the grid side is 2R,
where

R = ε + max {|(g − b) · u| , |(g − b) · v| : g ∈ G} (11)

for some small safety margin ε. Having chosen the grid,
we build, for each cell C[i, j], a linked bucket list B[i, j]
of all table entries (g, �g,

•
g) whose signatures g project onto

that cell. We also compute the corresponding bucket mean
µ[i, j], defined as the barycenter of all signatures g in the
list B[i, j]; and the bucket radius ρ[i, j], defined as the the
maximum Euclidean distance from µ[i, j] to any signature
g in that list. See figure 1.

The two-dimensional shape of G means that the entries
in B[i, j] are fairly close to each other, even if their mean
distance from the plane P is large compared to the cell size.
This property remains true even when m is greater than 3.

Once the bucket grid has been constructed, the scene sig-
natures s[p] are looked up with procedure 1 below. Its steps
are explained in sections 2.3 through 2.5.

Procedure 1 (Table lookup) Given an observation signa-
ture s, finds the entry tmin ∈ T whose signature field g is
most similar s.

1. i← �N((g − b) · u + R)/(2R)�;
2. j ← �N((g − b) · v + R)/(2R)�;
3. dmin← +∞;

4. For each pair (r, s) in ∆, in order, do

5. If dmin ≤ δ|:|(r, s)|:|, return tmin.

6. (i′, j′)← (i, j) + (r, s);
7. If 0 ≤ i′ < N and 0 ≤ j′ < N , then

8. If dmin > dist(s, µ[i′, j′])−ρ[i′, j′], then

9. For each t = (g, �g,
•
g) in B[i′, j′], do

10. Set d← dist(s, g);
11. If d < dmin,

set dmin← d and tmin← t.

12. Return tmin.

2.3. Bucket grid searching

In order to locate the entry closest to a given observation
signature s, we compute the indices (i, j) = h(s) of the cell

that contains its projection ↓ s (steps 1–2). We then search
for the entry tmin of T whose signature g is closest to s
in the list B[i, j], and then, if necessary, in nearby buckets
B[i′, j′], in some appropriate order (steps 3–4). Note that
some buckets may be empty, and that the best match to the
query s may not be in bucket B[i, j] — even if that bucket
is non-empty.

The bucket parameters µ[i, j] and ρ[i, j] allow us to
quickly skip over buckets that cannot possibly contain a
better match to the query signature s. More precisely, we
should examine a bucket B[i′, j′] only if the query signa-
ture s is closer to the bucket’s bounding ball than to the best
match x found so far (step 8); namely, only if

dist(s, x) > dist(s, µ[i′, j′])− ρ[i′, j′] (12)

We will call condition (12) the bucket scan criterion.

b

u
v

P

Figure 1. The two-dimensional bucketing al-
gorithm, for m = 3, showing some observa-
tion signatures in G (small circles), a bucket
list B[i, j] (small gray circles), and the en-
closing sphere (dotted circle) defined by the
bucket’s centroid µ[i, j] and radius ρ[i, j].

2.4. Bucket search order and early return

The bucket scan criterion (12) will often allow us to skip
a bucket B[i′, j′] without examining its entries. However,
if we were to apply this criterion for all buckets, individ-
ually, the running time would still be proportional to the
number N2 of buckets in the grid — which, as in any hash-
ing scheme, is expected to be proportional to the size of the
table. In that case, the bucket grid search would improve on
the brute-force solution only by a constant factor, at best.

To avoid scanning the whole grid, we enumerate the
buckets B[i′, j′] in a specific order, starting with the bucket
B[i, j] that contains the query and then moving gradually
away from it (step 4). A second criterion (step 5) then al-
lows us to abandon the search as soon as we detect that none

of the buckets still to be scanned can possibly contain a bet-
ter match than the one found so far. Typically, this happens
after scanning only a small fraction of the bucket array.

More precisely, consider two signatures s′ and s′′ that
project orthogonally to P into cells C[i′, j′] and C[i′′, j′′],
respectively. It is easy to see that

dist(s′, s′′) ≥ dist(C[i′, j′], C[i′′, j′′]) (13)

In this formula, dist(C[i′, j′], C[i′′, j′′]) is the minimum
distance between the two cells, seen as subsets of P . This
distance is

dist(C[i′, j′], C[i′′, j′′]) = δ|:|(i′ − i′′, j′ − j′′)|:| (14)

where δ = 2R/N is the grid mesh size, and

|:|(r, s)|:| =
√

(max {0, |r| − 1})2 + (max {0, |s| − 1})2
(15)

Note that |:|(r, s)|:| is a bit smaller than the Euclidean norm
|(r, s)| = √r2 + s2.

We conclude that a bucket [i′, j′] can be ignored if the
cell distance bound (13) excludes the possibility that a better
match can be found within it; that is, if

dist(s, x) ≤ δ|:|(i′ − i, j′ − j)|:| (16)

Note that condition (16) is weaker than condition (12).
However, condition (16) depends only on the current match
x and the difference (i′− i, j′− j) between the cell indices.
Therefore, if we scan the buckets (i′, j′) in such an order
that |:|(i′ − i, j′ − j)|:| is increasing, we can stop the search
as soon as that condition is satisfied (step 5).

For that purpose, as part of the table preprocess-
ing we precompute a list ∆ of all vectors (r, s) in
{−N + 1..N − 1} × {−N + 1..N − 1}, sorted by in-
creasing value of |:|(r, s)|:| (and breaking ties by |(r, s)|). For
each query signature s, we enumerate the buckets B[i′, j′]
by taking each displacements (r, s) from the ordered list ∆
and computing (i′, j′) ← (i, j) + (r, s) (step 6), provided
that i′ and j′ lie in {0, ..N − 1} (step 7). See figure 2.

2.5. Analysis

The average computation cost of algorithm 1 is roughly
Bb+Dd+O(1), where b is the average number of buckets
examined in each call (step 5), d is the average number of
table entries tested (step 10), and B, D are the costs associ-
ated to those two operations.

In the extreme case when N = 1, we will have b = 1 and
d = |T|, which is equivalent to a brute-force search of T. As
N increases, d will usually decrease towards 1, because the
test of step 5 will get satisfied before the procedure finds the
second non-empty bucket. At the same time, b will increase
immediately to about 10, because |:|(r, s)|:| is zero for the

8 5 4 4 4 5 8
5 4 1 1 1 4 5
4 1 0 0 0 1 4
4 1 0 0 0 1 4
4 1 0 0 0 1 4
5 4 1 1 1 4 5
8 5 4 4 4 5 8

(a)

45 41 33 27 34 42 46
37 21 17 11 18 22 38
29 13 05 03 06 14 30
25 09 01 00 02 10 26
31 15 07 04 08 16 32
39 23 19 12 20 24 40
47 43 35 28 36 44 48

(b)

Figure 2. (a) The squared cell distance func-
tion |:|(r, s)|:|2, and (b) the bucket scan order im-
plied by the list ∆, for the 7 × 7 cells nearest
to the starting cell (at center).

first nine pairs (r, s) in the list ∆. Thereafter, b will grow
slowly in proportion to N2, because the procedure will have
to skip Increasingly more empty buckets before finding the
first non-empty one.

This analysis indicates that there will be an optimal value
of N which minimizes the running time. The optimum de-
pends on the cost ratio B/D. In our tests, we found that
the total time was minimized when N was about 2

√|T| (an
average of 0.25 entries per bucket).

3. Experiments

To measure the actual performance of our bucketing
scheme, we used synthetic images produced by ray-tracing.
(While synthetic images are not acceptable for validating
complete VLPS algorithms, they are adequate to test the
speed of the signature look-up step, since they provide a set
G of realistic size and shape.)

In these tests, the scene consisted of a hemispherical
smiley-like mask with convex eyes and concave mouth
(both in low relief in order to avoid projected shadows),
with various shades of matte gray finish. See figure 3(a).
The gauge object was a sphere with white Lambertian fin-
ish; see figure 3(b).
The gauge images were subsampled to provide a signature
table T with 10219 entries. In all tests, the lighting setup
was a single point source located very far from the scene,
and the camera field-of-view was narrowed to provide near-
parallel image projection. We used 6 different input image
sets, varying the camera-to-light angle θ (either 10 or 45 de-
grees) and the number of input images m (either 3, 5, or 30).
For each data set, we used bucket grids with two different
sizes N × N , either 202× 202 or 143 × 143 (correspond-
ing to average entry-to-bucket ratios κ = |T| /N2 of 25%,
50%). We also processed each image set with N = 1, which
is essentially equivalent to the brute-force nearest-match al-
gorithm. While the larger values of N greatly reduced the

(a) (b) (c)

Figure 3. Scene (a) and gauge (b) used in the
tests. Figure (c) is a 3D view of the height
map obtained by integrating the scene slopes
computed by the method described in this
paper.

running time, the observation signatures returned by the ta-
ble look-up procedure were always identical to those of the
brute-force version.

Table 1 shows various average cost metrics for each ta-
ble look-up operation: the number b of buckets B[i′, j′] that
were examined, the number d of table entries that were ac-
tually tested (i.e., the number of evaluations of dist(s, g)),
and the look-up time t in microseconds. The tests were run
on a standard PC with a 3GHz clock. The absolute time t
obviously depends on the implementation.

Table 1. Average costs and operation counts
of the table look-up procedure for various val-
ues of θ, m, and N . The entries with N =
1 represent sequential table search (without
any bucket-grid speed-up).

θ m N κ t d b

10◦ 3 202 0.25 20.5 6.8 12.4
10◦ 3 143 0.50 22.9 11.8 11.2
10◦ 3 1 — 3987.5 10219.0 1.0
45◦ 3 202 0.25 18.0 3.5 10.0
45◦ 3 143 0.50 18.3 6.4 10.0
45◦ 3 1 — 3985.3 10219.0 1.0
10◦ 5 202 0.25 22.3 6.4 11.7
10◦ 5 143 0.50 25.1 11.1 10.9
10◦ 5 1 — 5620.1 10219.0 1.0
45◦ 5 202 0.25 29.0 10.5 45.2
45◦ 5 143 0.50 28.7 12.2 28.9
45◦ 5 1 — 5606.3 10219.0 1.0
10◦ 30 202 0.25 58.4 9.7 11.4
10◦ 30 143 0.50 76.4 16.7 10.8
10◦ 30 1 — 26637.9 10219.0 1.0
45◦ 30 202 0.25 74.9 12.5 51.2
45◦ 30 143 0.50 78.9 14.1 32.3
45◦ 30 1 — 26605.5 10219.0 1.0

Figures 4 and 5 show the sizes of the bucket lists B[i, j]
in two of those tests (with m = 5, θ = 10◦ and m =

30, θ = 45◦, respectively). In both cases we had N =
202, and therefore κ = 25%. Note that, in most cases, the
observation signatures are distributed fairly evenly over a
substantial fraction of the grid.

 0

 50

 100

 150

 200

 250 0

 50

 100

 150

 200

 250

 0

 5

 10

 15

 20

 25

Figure 4. Bucket list lengths for m = 5 and
θ = 45◦. The longest bucket has 8 entries.

 0

 50

 100

 150

 200

 250 0

 50

 100

 150

 200

 250

 0

 2

 4

 6

 8

 10

 12

 14

 16

Figure 5. Bucket list lengths for m = 30 and
θ = 10◦. The longest bucket has 5 entries.

4. Conclusions and future work

Our bucket-grid-based algorithm always yields the best-
matching entry in the signature table. With the proper
choice of the grid size N , the algorithm is considerably

faster than brute-force search (by orders of magniture) even
for large values of m.

The two-dimensional grid that we use is consideraly
more efficient, in both time and space, than the general
m-dimensional nearest-neighbor data structures previously
considered for this problem. Thanks to the optimal align-
ment of the grid, we obtain compact spherical enclosures
for each bucket, which allow us to eliminate an entire bucket
with a single distance comparison. Moreover, the 2D struc-
ture means that we need to scan only a few buckets (about
10) surrounding the hashed cell. Moreover, unlike previ-
ous grid schemes, our method always yields the best match-
ing entry in the table (and not just a close approximation
thereof).

We have restricted the input to monochromatic images
only to simplify the exposition; but our 2D bucket-grid
method works equally well for color images. If each image
has c spectral bands (color channels), the color observation
vectors S[p] and G[q] are the concatenation of c monochro-
matic OVs with m components each. As before, in order to
recover the scene normal �s[p] at a point p, we look for for
a gauge point q such that the color signatures s[p] and g[q]
match; except that the color signatures are obtained from
the color OVs by normalizing the OV in each band sepa-
rately. The color signatures then become points of the space
(Sm)c ⊆ Rmc; but they are still a 2-dimensional manifold
in that space, and therefore can be organized by a single 2-D
bucket grid.

Acknowledgements

This project was partly supported by research grants
from CNPq (304581/2004-6 and 301016/92-5), CAPES,
FAPESP and FAPERJ.

References

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate neareast
neighbor searching in fixed dimensions. Journal of the As-
sociation of Computing Machinery, 45(6):891–923, 1998.

[2] S. Barsky and M. Petrou. The 4-source photometric stereo
technique for three-dimensional surfaces in presence of
highlights and shadows. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 25(10):1239–1252, Oct. 2003.

[3] R. Basri, D. Jacobs, and I. Kemelmacher. Photometric stereo
with general unknown lighting. International Journal of
Computer Vision, 72(3):239–257, 2007.

[4] A. Hertzmann and S. M. Seitz. Shape and materials by
example: A photometric stereo approach. In Proceedings
IEEE CVPR 2003, volume 1, pages 533–540, June 2003.

[5] A. Hertzmann and S. M. Seitz. Example-based photometric
stereo: Shape reconstruction with general, varying BRDFs.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 27(8):1254–1264, Aug. 2005.

[6] P. Indyk and R. Motwani. Approximate nearest neighbour:
Towards removing the curse of dimensinality. In Proceed-
ings of the 13th Annual ACM Symposium on Theory of Com-
puting (STOC’98), pages 604–613, 1998.

[7] L. Shen, T. Machida, and H. Takemura. Efficient photo-
metric stereo for three-dimensional surfaces with unknown
BRDF. In Proceedings of the 5th International Conference
on 3-D Digital Imaginga nd Modeling (3DIM’05), pages
326–333, 2005.

[8] R. J. Woodham. Photometric method for determining su-
face orientation from multiple images. Optical Engineering,
19(1):139–144, 1980.

[9] R. J. Woodham. Determining surface curvature with pho-
tometric stereo. In Proceedings of the 1989 IEEE Interna-
tional Conference on Robotics and Automation, volume 1,
pages 36–42, May 1989.

[10] R. J. Woodham. Gradient and curvature from the photo-
metric stereo method, including local confidence estima-
tion. Journal of the Optical Society of America, Series A,
11(11):3050–3068, 1994.

[11] L. Zhong and J. J. Little. Photometric stereo via locality sen-
sitive high-dimension hashing. In Proceedings of the Sec-
ond Canadian Conference on Computer and Robot Vision
(CRV’05), pages 104–111, 2005.

