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Abstract

In this paper, we describe a complete text extraction sysbermutomatic indexing of geo-
referenced mosaics of building facades, especially gigma stores and services. The sys-
tem consists of an original text detector, calledd®PERTEXT, whose output is fed to the
TESSERACTOpen-source OCR software NSOPERTEXT uses a multi-resolution approach
to remove irrelevant detail from character shapes and taldhe use of overly large im-
age processing kernels. At each resolution scale, ourmylsteates candidate characters
by using image segmentation and shape descriptor baseactdranon-character classifica-
tion. The candidate characters are then grouped to forraresgindidate words or candidate
text lines. These candidate regions are then validated lexttnon-text classifier using a
HOG-based descriptor specifically tuned to single-line tegions. We show thatN®or-
ERTEXT outperforms other published state-of-the-art text deiealgorithms on standard
image benchmarks. We also describe two metrics to evalhatertd-to-end performance of
text extraction systems.
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1. Introduction

The detection of text embedded in images or videos of urbanescis a challenging
problem in computer vision [1] with many potential applicat, such as traffic monitoring,
geographic information systems, road navigation, andesaaderstanding. Here we consider
one particular application, the iTowns project [2], whidima to build tools for resource
location and immersive navigation in urban environmeritsjlar to that of Google’s Street
View [3]. The main raw data for the iTowns project is a colieotof GPS-tagged high-
resolution digital photos of the city, including severallung facades, taken with a set of
car-mounted cameras. The raw images obtained by the catitateed into geo-referenced

mosaics. The mean viewpoint spacing between photo setsig abe meter. See figure 1.

Figure 1: Imaging vehicle and example of an urban scene iroageired by the iTowns project.

The frontal images are then processed offline to extract egiple textual information,
such as street and traffic signs, store names, and buildimpens. The extracted strings are
then stored in a geo-referenced database, which is usedweatextual queries by users—
for example, to locate the addresses of stores with a spcifiene or selling a specified
product. See figure 2.

The iTowns project could easily generate hundreds of thuisaf such mosaics in a
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Figure 2: Result of a search for the query string “sushi” tigtothe iTowns user interface. The textual informa-
tion was extracted with our text detection system.

single city. The manual annotation of all these images withwisible textual information
would be very time consuming and probably impractical. Qyeautomated algorithms for

this task are highly desirable.

The difficulties in this task mainly come from the diversifitioe texts (including extreme
text size and font variations, and tilted or curved basslinthe complexity of the back-
grounds (including many vaguely text-like objects sucheaxés, windows, cobblestones,
etc) and difficult illumination conditions. OCR algorithmegigned for scanned documents
perform very poorly on such photos. See figure 3(a). Muchebe#ésults are obtained by
applying an OCR algorithm to the output of a text detector gte=il specifically for such

images, as illustrated in figure 3(b).

In this paper, we describeN® OPERTEXT, the text detector we developed for the iTowns
project. NOOPERTEXT initially locates candidate characters by using image ssgation

and a shape-based character/non-character binary dassifie candidate characters found
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Figure 3: (a) A store-front photo from the iTowns image bas# the output of the ESSERACTOCR software
applied over the whole image. (b) Text line regions iderdifiy our detector and the output of the back-end of

the TESSERACTOCR software applied to those regions.

in this step, represented by their bounding boxes, are ttmipgd by simple geometric cri-
teria to form either candidate words or candidate text linEsese steps are performed in

a multi-scale fashion, in order to efficiently handle wideljferent character sizes and to
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suppress irrelevant texture details inside the charadt@mnally, the candidate text regions are

validated by a binary text/non-text classifier, that rejeanty candidate region that does not

seem to contain a single line of text. This classifier useSthEOG descriptor [4], which is

based on the multi-celistogram of oriented gradien{$1OG) of Dalal and Triggs [5]. The

regions found by SOOPERTEXT are then fed to ESSERACTs back-end for OCR process-

ing [6]. See figure 4.
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Figure 4: Overall diagram of theN® OPERTEXT detector (a)—(d) and the OCR step (d)—(e).

Tests show that SOOPERTEXT is comparable or better than other state-of-the-art text

detectors described in the literature [1, 7, 8, 9, 10, 11{hisipaper we also evaluate the end-

to-end performance of the complete system@®PERTEXT with TESSERACTs back-end),

measured by both approximate and exact string matchingeoéxtracted and ground-truth

texts. As a collateral result, we show that we can improveTtBesERACTfront-end text

detector on street images by using@@PERIEXT's T-HOG-based validation module to

filter out most of its false positives.



The SNOOPERTEXT algorithm described and tested here is an improvement ehaqus
work [12] in the use of the T-HOG descriptor for text-regiaaligtation and tunning of var-
lous internal algorithm parameters. We extended our pusviwork by describing in detalil
each part of SOOPERTEXT (character segmentation, geometric filtering, charactargng,
and multiscale processing), reporting its performancedutitional databases, and showing
its use to improve the word recognition in urban scene images

This paper is organized as follows. In section 2 we reviewlitheature on text detectors
and text/non-text classification, with emphasis on urbaqs The SIOOPERTEXT detector
is described in section 3, and its experimental evaluasoreported in sections 4 and 5.

Concluding remarks are provided in section 7.

2. Previous work

2.1. Text detection

There is an extensive literature on text detection. Theeyuof Jung et al. [13] and
Liang et al. [14] covers some systems up to 2005. Many appesafor text detection are
devoted to specific contexts, such as postal addresses elopes [15], cursive handwrit-
ing [16], license plates [17], etc. For natural scene preiogs more generic systems have
been recently considered [1, 7, 8, 18].

Recently, some benchmarks [19, 20, 21] and challenges [28} arganized to give a
clear understanding of the current state-of-the-art afinshscene text detection algorithms.
Basically, two general approaches for text detection haee peoposedbottom-up consist-
ing of character identification by analyzing the structutest make up text letters, such as
edges, textures, colors or connected components, follyegfouping into texts; antbp-
down which look first for text regions, by exhaustively samplsgo-regions in the original

image with a sliding window mechanism, and then splittingséihregions into characters.
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Itis interesting to note that the two leading systems in ®@5ACDAR challenge [22] rely
on different methodologies. The system of Hinnerk Becket (@&ner of the 2005 ICDAR
challenge) is an example of bottom-up solution. It uses aptike binarization scheme
to extract character regions which are then combined intoltees according to certain
geometrical constraints. Alex Chen et al. [23] (second piadke 2005 ICDAR challenge)
developed a top-down approach that makes use of a stdt@tialysis over regions of the
frame to identify those that are likely to contain text. Thérey used a cascade of classifiers
trained over the chosen features to prune those candidagiems. Finally, those regions are
segmented into which are assumed to be text characters.

Most of the text detection systems for natural scenes hase bealuated in the ICDAR
dataset since 2005. Seven state-of-the-art systems; @thedown or bottom-up, are briefly
discussed in what follows.

In 2007, Mancas-Thillou and Gosselin [18] proposed a toprdoolor-based approach,
by clustering similar color together based on the Euclidiatance and a cosine-based simi-
larity, in the RGB color space, for character segmentati@heaatraction. The authors did not
focus in the text detection part, they assumed that the égxdms were previously bounded.
They have used intensity and spatial information obtainetdyg-Gabor filters to segment
characters into individual components. This approach aserto fail in those texts with
similar colors for foreground and background.

In 2010, Epshtein et al. [7] proposed a bottom-up approaokwkras Stroke Width Trans-
form (SWT) to detect characters in images. They used the greglients orientation over
image edges to determine a “local stroke width” and gathezlpiwith similar stroke widths
into regions which are likely to be characters. In additithve, authors provided a new anno-
tated benchmark with urban scene images taken with harbeheteras [19].

In 2011 and 2012, Chen et al. [8] and Neumann et al. [10], pregpd®ttom-up meth-

ods based on Extremal Regions (ER). Chen et al. used MaximalhleSExtremal Regions
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(MSER), which are a subset of ER, for edge-enhancement in trdandidate character de-
tection. The letter candidates were then filtered out ugirudks width information computed
by the SWT. However, as observed by Neumann et al., MSER desdtave problems with
blurry images and characters with low contrast. Therefdsgjmann et al. used all ERs and

classified them as being characters or not by developingnatiteatures.

Also in 2011, Pan et al. [9] proposed an hybrid multi-scalprapch for text detection.
They used a sliding window detector, in each scale of therpgtacomposed by a cascade
of classifiers trained over HOG features, to initially estimthe text positions. The estimates
were then used to enhance the original image in order to helgharacter segmentation.

Then, the authors performed character classification amapgng.

In 2012, Yietal. [11] and Yao et al. [1] proposed bottom-ugimeels that uses the stroke
width information to character identification. As obsenmdyYi et al., the letter boundary,
used by the SWT, may be broken or connected to a non-text ahjecto background inter-
ference. To avoid this problem, the authors proposed aroappmwhich combines edge pixel
clustering and the structural analysis of the stroke boyndiéh a color assignment proce-
dure. The character grouping was done by considering thengiei@ properties of nearby
characters. Yao et al. proposed an approach to detect teatbitrary orientations. The au-
thors used the SWT to character extraction and two layerstefdibased on geometric and
statistical properties, as well as, a classifier traineth wiale and rotation invariant features
to reject non-text characters found by the SWT. The charagtarping was done by con-
sidering the stroke properties, geometric and color featof nearby characters. A greedy
hierarchical agglomerative clustering method was alsdieghpo aggregate characters pairs

into candidate chains.



2.2. Text classification

Comparatively little has been published about text/non-dkassificationalgorithms, al-
though they are often present as post-filters in many texiotiats.

Text classification is often cast as a texture classificgpimblem, and several texture
descriptors have been considered in the literature. Ftanoe, in 2004, Kim et al [24] de-
scribed a text recognizer that decomposes the candidatensuge into a multiscalé6 x 16
cell grid and compute wavelet moments for each block. Theh b#ck is classified as text
or not using an SVM. The ratio of text to non-text outcomesssduto decide if the entire
sub-region is text or non-text. In 2005, Ye et al. [25] ddsedi a similar text recognizer with
multiscale wavelet decomposition but they used more etbdeatures including moments,
energy, entropy, etc. In 2004, Chen and Yuille [26] proposetkscriptor that combines
several features, including 2D histograms of image intgresaid gradient, computed sepa-
rately for the top, middle and bottom of the text region, adl we for more complex slices
subdivisions of the image—=389 features in total.

Other text detectors, such as the one described by Anthiotopet al. in 2010, have used
descriptors based on multiscagesal binary patterngLBP) introduced by Ojala et al. [27].
Their descriptor has 256 features.

In 2012, Yi et al. [11] proposed a text line descriptor thanbines the Gabor filter with
gradient and stroke information. They used the block pagtproposed by Chen and Yuille.
Their descriptor has 98 features.

The use of gradient orientation histograms (HOGS) as textascriptors was introduced
by Dalal and Triggs in 2005 [5], for human recognition. HOGcl#ptors are used in some
recent text recognizers, such as the one proposed in 200&rbgtRal. [28]. They partition
the candidate sub-image into 14 cells, as proposed by Che¥iuliel but compute for each
cell a 4-bin HOG complemented byax 3 array of LBP features. Their complete descriptor

has 140 features.



Other HOG-based text recognizers have been proposed in®3d8anif and Prevost [29]
for single-line text, and Wang et al. [30] for isolated Chim@sd Roman characters as well
as single-line text. Hanif and Prevost’s descriptor hasf@&fures (16 cells each with a 8-bin
HOG, supplemented by 7 mean difference and 6 standard aeviatitures over 16 cells).
The descriptor of Wang et al. has 80 features (8 cells eadhMiteatures: a 8-bin HOG; 1
mean difference; and 1 standard deviation).

These HOG-based text recognizers, and several otherseusgal/cuts as well as hori-
zontal ones when partitioning the candidate region. Theofisertical cuts was apparently
borrowed from the Dalal and Triggs paper [5] on pedestrimogaition. They may be jus-
tifiable for isolated characters, but they do not appear tadsful for multi-character texts
of variable width. In such texts, the gradient distributisargely independent of horizontal
position; therefore, a cell layout with vertical cuts inases the size of the descriptor without

providing any additional relevant information.

3. Text detection and classification

As shown in figure 4, the SOOPERTEXT detector consists of three main modules: char-

acter detection, letter grouping, and text region valatati

3.1. Character detection

The structure of SOOPERTEXT’s character detection module is outlined in figure 5. It
consists of three stages: foreground/background imageesggtion, geometric filtering and
letter/non-letter classification. They are described in-sections 3.1.1-3.1.3. These steps

are applied in multi-scale fashion, as described in se@&i8n

3.1.1. Image segmentation

The segmentation algorithm used IRGOPERTEXT was developed by Fabrizio et al. [31].

It is a modified version of Serrat®ggle mappind32], a morphological operator for local
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Figure 5: The letter detection stage 0i GOPERTEXT.

contrast enhancement and thresholding, using morphabgrosions and dilations [33] to

define the local foreground and background levels.

Specifically, in order to segment the original input imdgeve first compute a local
background imag® by grayscale erosion (neighborhood minimum) and a locadgmund
imagel by grayscale dilation (neighborhood maximum), usinga 9 squared structuring
element. Note thaB(z,y) < I(z,y) < F(x,y) for every pixelz,y. Then each pixel(z, y)
is mapped to a ternary class valdér, y) € {0, 1,2} as follows. If|F(z,y) — B(z,y)| is less
than a fixed threshold,,;,, thenD(x, y) is set to 1 (indeterminate). Otherwid®(x, y) is set
to O (presumed background) or 2 (presumed foreground) diépgion whether the relative

brightnessll(z, y) —B(x, y)|/|F(z,y) —B(x, y)| is less than or greater than another threshold
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Since the thresholding is not symmetrical between dark @it tegions, and target
scenes often have light text on dark background, the segti@mtis repeated on the neg-

ative (pixel-wise complemented) image. See figure 6.
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Figure 6: (a) Toggle segmentation of the positive image b@okground (dark gray), foreground (white) and
indeterminate (light gray) pixels. (b) Toggle segmentatibthe negative image.

3.1.2. Geometric filtering

The foreground regions (letter candidates) from both segatiens (positive and nega-
tive) are filtered by simple geometric criteria, based onatteaA, width w, and height, of
their bounding boxes (minimal axis-aligned enclosingargtes). Namely, a letter candidate

region is accepted iff

Amin S A S Amax
Wmin S w S Wmax

hmin S h S hmax

where A, Amaxs Wmin, Wiax, Pmin @Nd hyay, are internal parameters oNSOPERTEXT

and depends on the size range of the letters. See figure 7.
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Figure 7: (a) The regions found by segmentation; (b) Theiginy regions after the geometric filtering.

3.1.3. Letter/non-letter classification

For each box that passes the geometric criteria, the digorixtracts from the corre-
sponding segmented region three scale- and rotationiimtashape descriptors: Fourier mo-
ments, pseudo-Zernike moments, and an original polar emg¢81]. These descriptors are
fed to three separate SVM classifiers, whose numeric ougpatpacked as a three-element
vector and fed to a final SVM classifier [34]. The output of tmafiSVM is then thresholded

to yield a binary letter/non-letter decision. See figure 8.
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Figure 8: The letter/non-letter classifier of the charad&tection module.

These SVM were trained on a dataset of bi-level images s&ldny hand from the output
of the segmentation and geometric filtering phases, comgri200 instances of uppercase
and lowercase letters (positive samples) and 16200 rarydohdsen non-letter segments

(negative samples). See figure 9.

3.2. Letter grouping

SNOOPERIEXT'’s character grouping module joins the candidate lettersddoy the char-

13



TErhy ¥

Figure 9: Some of the positive and negative segmented shigpedo train the letter/non-letter classifier.

acter detector into text regions — which may be either wordiext lines — according to
geometric criteria defined by Retornaz and Marcotegui [38ESE criteria take into account
the heightshy, h, and widthsw,, w, of the two bounding boxes, as well as the coordinates

(x1,y1) and(z2, y) Of their centers. See figure 10.
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Figure 10: Geometric parameters used for letter grouping.

Specifically, leth = min(hy, hs), d; = |z1 — 22| — (w1 + w2)/2 andd, = |y; — yo|. Note

thatd, is negative iff the two boxes overlap in thedirection. Then the two boxes are said to
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be compatible— that is, assumed to belong to the same text word or line — iff

|h1—h2| < tlh
d, < tah

dy < t3h

wheret,, t, andts are parameters of the module. The paramgtan particular, determines
whether the groups will be words or text lines, whilecontrols whether multiple lines are to
be merged into text blocks.

These criteria are applied to all pairs of detected charsclehe groups are the equiva-
lence classes of the transitive closure of this compatjtiélation.

At this stage, letters that were not joined to any group aseatded. This requirement
normally eliminates a large fraction of the false positif@sn-letter regions classified as let-
ters by the previous steps). Each group is then summarizadgingle axis-aligned rectangle,

which is the bounding box of its component letters. See figure

pswich] LA 12

Figure 11: Grouping letters into text words.

The grouping module is applied separately to the candidatesl in each segmentation
(positive and negative). Then the two lists of candidatéregions are merged, and any two

regions that have significant overlap (70%) are fused iniaglesregion.

3.3. Multi-scale processing

The segmentation and character/non-character recogmliases perform rather poorly

if used at a single scale. Text embedded in photos of urbamestey have characters of
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widely different sizes and styles. Characters that are marget than the structuring element
used in the morphological thresholding are often over-seged. To overcome this problem,
those two steps described above are applied in a multi-fzstéon [36]. At each resolution
level, the segmentation is applied to a reduced version efirthut image, with the goal
of detecting characters of a limited size range, and auicaigtignoring small irrelevant
details of character shape and texture.

More precisely, for each imade SNOOPERTEXT first builds a multi-scalenage pyramid
1O, 1M 10", The basd® of the pyramid is the original image and each level® is
a copy of the next lower on&'~), reduced to half its width and half its height (so that level
I¥ has1/4' as many pixels as lev&®). The maximum leveh depends on the size of the
original image and the minimum size of the characters to lectkd.

The segmentation, character/non-character classificaiod grouping steps are applied
separately to each level of the pyramid. At each level, therihm only looks for letters
whose areas lie in the ran@@,,;, ... Awna.x/, defined in section 3.1.2, which corresponds
to the size rangél' A, ... 4'A,...] in the original image. The parametets,;, and A,,.,
are chosen so that there is some overlap between two coiveestaled and/ + 1, namely
Apax > 4An. Similar considerations apply to the linear patameétgr, hmax, Wmin, and
Wimax- S€gmented regions whose area fall outside the intéA@l, ... A...] are ignored,
since they are expected to be found at other scales. See figu@ne advantage of the multi-
scale approach is that we can use use a structuring elemiexead{and modest) size in each
morphological operation, with significant speed gains. e\ibiat the cost of processing the
whole image pyramid, for letters of any size, is OIE/Z.:O 1/4" ~ 4/3 times the cost of
processing the original image for letters within the fixexdges of section 3.1.2.

Another advantage of the multi-scale approach is that itea#tke segmentation algorithm
insensitive to letter texture — high frequency details @we much smaller than the letters

themselves. Those details may cause each letter to bedplgaveral separate segments, and
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Level O Level O

Level 1

Level 2

Figure 12: Example of multiscale segmentation and lettézadi®n, showing accepted candidate letters (left)

and accepted text lines (right) at each level.

will tend to confuse the the character/non-character iflas3Vith the multi-scale approach,
these problems are largely avoided when the segmentataoegure is applied the scale

where the letters are still legible but those finer detailelzeen blurred away. See figure 13.
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Level O

Figure 13: Example of multiscale segmentation and lettexadion, illustrating texture suppression at the proper
scale. Note that the letters of ‘SIGNO’ are oversegmentdehials O and 1 but correctly segmented and recog-

nized (black boxes) in level 2.
3.4. Text region validation module

The character detection module analyzes only the segmehégdcter shapes in isolation,

and the character grouping module looks only at their baugntoxes. In order to obtain a
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good end-to-end recall score, these two modules must be toreccept a high rate of false

positives—regions that are mis-identified as charactedsgaouped into spurious text line

Figure 14: Some examples of false positives found by theatiar detection and grouping modules.

candidates. See figure 14.

The task of SIOOPERTEXT'’s region validation module is to weed out these false paesti
by analyzing the image content of each candidate text regganwhole.

This module is basically a texture classifier, based on th¢OIG descriptor [4]. The
latter is a variant of Dalal and Triggs's R-HOG descripto}, [§pecialized to capture the
gradient distribution characteristic of letter strokesogtidental-like scripts. The T-HOG
descriptor is fed to an SVM classifier, whose output is tho&dd to give a binary text/non-
text classification.

The T-HOG descriptor is based on the observation by Chen ailig Y2004) that dif-
ferent parts of Ocidental-like text have distinctive datitions of edge directions [26]. That
is because images that consist of bi-level strokes (such amRé&etters), the orientations of
the strongest gradients tell the orientations of thoséefo

The HOG-based text/non-text discriminators reportederiitrature generally use a two-
dimensional array ofy x ny cells, as Dalal and Triggs used for human body recognitign [5
The use of a two-dimensional cell array may be justifiableigotated characters, but does
not seem to be useful for multi-character texts of variahldthv In such texts, the gradient
distribution is largely independent of horizontal posititherefore, a cell layout with vertical

cuts increases the size of the descriptor without providmgadditional relevant information.
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The detailed description of the T-HOG descriptor and itsexpental analysis have been
published separately [4]. To obtain the descriptor, thegeladelimited by the candidate
rectangle is first extracted, converted to grayscale, ddala fixed height{, preserving its
aspect ratio, and normalized for local variations of bmgsts and contrast with a Gaussian
weight window. The sub-image is then divided into a smalldixeimbern, of horizontal
stripes, and a histogram witly of bins is built for each stripe. Specificaly, the image geadli
Is computed at each pixel within the stripe, its directioguantized into a small numbeg, of
equal angular ranges, and the corresponding bins of thegh#sh are incremented. Opposite
directions are identified, so each bin7ign, radians wide. The T-HOG descriptor is the

concatenation of thosg, histograms.

The contribution of each pixel to the histogram is weightedhe gradient’s norm, so that
the small gradients that result from camera and quantizaiase are largely ignored. Both
the stripes and the histogram bins have gradual boundari@sler to minimize the impact

of small vertical shifts and rotations of the text inside foeinding box.

Indeed, through extensive experiments [4] we confirmed tbatany descriptor length,
the partition into horizontal stripes was generally mofecaive than a two-dimensional ar-
rangement. Moreover, near-optimal results could be obtawith fairly small descriptors:
we are usingy, = 7 andn, = 9 in SNOOPERTEXT, but if used instead, = 4 andnp = 5

we would reduce the descriptor size to 20 while lowering tweas by 1 to 2% on average.

We also found that pre-scaling the given text region to a kfixeld heightH (currently
24 pixels) was more efective than computing the HOGs at tiggnai resolution. We believe
that this resizing step is a good balance between presenvatiuseful detail and removal of

noise and spurious texture
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4. Performance of the text detector

In this section, we compared the performance RbSPERTEXT with that of other text

detectors published in the literature, in their ability dgdte text lines.

4.1. Image collections

For our tests, we used four image collections, describembétor each of these datasets
we have aeference fil&eontaining the bounding boxes of its text regions and theespiond-

ing text contents, in a simple XML format.

1. ITW: a subset of the iTowns Project’s image collection [2], ¢stirsgy of 100 frontal
high-resolution color photos of Parisian fagades, WitR0 x 1920 pixels, as taken by
the iTowns vehicle. The reference file, contain#ig readable text words, is available
on-line [37].

2. SVT: a public benchmark of 249 urban photos selected from thegledstreet View
images by Wang et al., ranging from24 x 768 to 1918 x 898 pixels. The reference
file contains 647 readable words [20].

3. EPS: the benchmark used by Epshtein et al. [7], vditkT color images of urban scenes,
ranging from1024 x 768 to 1024 x 1360 pixels, taken with hand-held cameras. The
reference file, containing981 readable text lines, was provided by the authors [19]
and converted to XML by us [37].

4. | CD: the “testing” half of the 2005 ICDAR Challenge collection [22onsisting of
249 color images, ranging frorB07 x 93 to 1280 x 960 pixels, captured with various
digital cameras, of book covers, road signs, posters, ¢te.r@ference file, containing

1107 readable text words, was provided by the Challenge orgamnizer

ThelCD collection is not very appropriate for our purposes, sind@as images with just

one single big character, photos of book covers, etc. Weided it because it is a popular
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benchmark for text detection, and it is the only one for whighhave several performance

of other detectors.

4.2. Parameter settings

The NOOPERTEXT parameters, described in section 3, were set as followsmage
pyramid heightn = 3 levels; minimum constrast,;, = 8 for ITW, ICD andSVT datasets,
andc,;, = 12 for EPS dataset; relative threshold= 0.79; maximum height difference
t; = 1.1; the t, parameter (maximum relative letter spacing) was set @iffly for each
dataset so that characters would be grouped in the same wathasorresponding reference
file: namely, into words fofTW, ICD andSVT (¢, = 0.4), and into lines foEPS(¢; = 0.8);
and merging of multiple lineg; = 0.7.

The T-HOG was trained with the true and false positives megreported by the character
detection and grouping modules oiSOPERTEXT, when applied to the “training” subset of
thelCD image dataset and with ground-truth text regions. The T-HEMM used a Gaussian

x? kernel, whose standard deviation was found by cross-\taicla

4.3. Competing detectors

We compared SOOPERTEXT against several state-of-the-art text detectors destnbe
the literature. Specifically, we compared it with the cotaets of the ICDAR Challenge [23],
and also with the detectors of Yao et al. [1], Epshtein e7dJH. Chen et al. [8], Pan et al. [9],
Neumann et al. [10] and Yi et al. [11]. (The system of Mancasgldu and Gosselin [18] uses
the text detector of Alex Chen, which is included in our set.)

We added to our list of competing text detectors the fromt-erodule of the popular
open-source ESSERACTOCR software (ESS-RONT), whose task is to locate the candidate
text regions in the input image before calling the back-eRESE-RONT) to parse them.

TESSERACTIsS considered one of the best OCRs publicly available todayHévever, its
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front-end was designed for scanned documents, and it yseglbrts a large number of false
positives when applied to photos of 3D scenes. See figureph (Therefore, we also added
to our list of competing detectors the combination &SE-RONT with the T-HOG as an

output filter (TESFRONT+T-HOG). See figure 15 (bottom).

4.4. Rectangle-based performance metrics

The quantitative criteria we used to compare these texttateystems are based on the

ICDAR 2005 measure of similarity [23] between two rectangles defined as

m(r, s) = 1)

where A(t) is the area of the smallest rectangle enclosing the.sd@he functionm(r, s)
ranges betwee (if the rectangles are disjoint) aid(if they are identical). See figure 16.

The functionm is extended to a set of rectanglgédy the formula

m(r,S) = max m(r, s) (2)

From this indicator one derives the ICDARRecisionP andrecall R scores [23],

Zm(r, T) Zm(r, E)

rel _reT

whereT is the set of rectangles in the reference file, &b the set of rectangles reported
by the detector.

For ranking purposes, the ICDAR 2005 Committee usedithaeasurd?23], which is
the harmonic mean of precision and recéll=2/(1/P + 1/R).

4.5. Computing average scores

There are several ways of averaging theR, andF’ scores over a multi-image database.

The approach used by the ICDAR 2005 scoring program (methisdd) evaluate”, R and
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Figure 15: Examples of theEES-RONT detector output (top) andeEBS-RONT with T-HOG post filter (bot-
tom). At left, the input image with the detected regions higiited. At right the OCR (ESSBACK) output for

those text regions.
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Figure 16: The rectangle similarity scowg(r, s) for various text regions detected by SooPERTEXT (solid

outlines) and the best-matching regionfsom the reference file (dashed).

F separately for each image, and then compute the arithmetinraf all three scores over

all images. Another approach (method II) is to comphtand R for each image, then take

the arithmetic means of al and R values, and computg from these means. Yet another

approach (method Ill) is to compute the precision and rdoathulas ( 3) by takingz and
T as the union of all text regions in all images. We note thatayieg method | suffers
from higher sampling noise and a negative bias comparecetottier two, because it gives
equal weight to each image irrespective of the number ofweredle text objects in it and
the F'-score is a non-linear function of tHé and R rates. In particular, the averagétdscore

(method I) tends to be lower than the harmonic mean of avdr&gend R (method I1).

This point must be considered when comparingalues reported by different authors,

since it is not always clear how they were averaged.
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4.6. Results of text detection evaluation

The text detection scores on the four image collectionslaoe/s in tables 1-4. For our
comparisons, in order to match the other entries, we hadcwmputed the overal’ score
ourselves (according to the averaging method Il), for aéd®rs, from the globaP and R
scores reported by the authors. We could not use methoddduse, for most competitors,

the required data (the set of rectangles detected in eadejmas not available.

Detection scores

System P R F

SNOOPERTEXT 0.72| 0.50| 0.59
TESFRONTH+T-HOG || 0.30| 0.13| 0.18
TESERONT 0.05| 0.15] 0.07

Table 1: Text detection scores oRSOPERIEXT and other detectors on thiEW dataset.

Detection scores

System P R F

SNOOPERITEXT 0.36| 0.51| 0.42
Neumann et al. [10] || 0.19| 0.33| 0.26
TESERONT+ T-HOG || 0.15] 0.15| 0.15
TESSFRONT 0.04| 0.18| 0.06

Table 2: Text detection scores oRSOPERIEXT and other detectors on ti8/T dataset.

4.7. Discussion

As can be seen in table 1, the performance 0b6SPERTEXT was much better than that
of TESFRONT (which was not designed for photos of outdoor scenes), egargthigh
resolution images of thETW dataset. When we consider the two challenging urban scene

datasetSVTandEPS tables 2—3, with text in different orientations and imaggt noise,
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Detection scores

System P R F

SNOOPERTEXT 0.59| 0.47| 0.52
Epshteinetal. [7] | 0.54| 0.42| 0.47
TESEFRONT4+T-HOG || 0.21| 0.10| 0.13
TESSERONT 0.02| 0.14| 0.04

Table 3: Text detection scores oRSOPERIEXT and other detectors on tli#P Sdataset.

Detection scores
System P R F

Yietal. [11] 0.73| 0.67| 0.70
Pan et al. [9] 0.67| 0.70| 0.69
SNOOPERITEXT 0.73| 0.61| 0.67
Yao et al. [1] 0.69| 0.66| 0.67
H. Chen et al. [8] 0.73| 0.60| 0.66
Epshteinetal. [7] | 0.73] 0.60| 0.66
Hinnerk Becker 0.62| 0.67| 0.64

Alex Cheri 0.60| 0.60| 0.60
Ashidd 0.55| 0.46| 0.50
HWDavid' 0.44| 0.46| 0.45
Wolff 0.30| 0.44| 0.36
Qiang Zh 0.33| 0.40| 0.36
TESFRONT+T-HOG || 0.35| 0.27| 0.30
Jisoo Kim 0.22] 0.28| 0.25
Nobuo Ezaki 0.18| 0.36| 0.24
TESSRONT 0.18| 0.29]| 0.22
Todoran 0.19| 0.18| 0.19

Table 4: Text detection scores oNSOPERTEXT and other detectors on th€D dataset. The competitors of

the ICDAR 2003 and 2005 challenges are marked Wuith
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the SNOOPERTEXT improved thef” score byl 6% and5%, respectively, over the second best.
Note in table 3, that SOOPERTEXT outperformed the Stroke Width Transform (SWT) [7] of
Epshtein et al. on their own dataset.

In the ICD dataset, table 4, the performance ofG®PERTEXT is comparable to that of
the best detectors described in the literature.

As can be seen in tables 1-4, filtering the output BEFRONT through our text region

validation module significantly improved its precision lwiittle loss of recall.

5. End-to-end performance

We also measured the correctness of the strings extrached the SIOOPERTEXT-
detected regions by the OCR algorithm used in the iTowns egidin. Although the latter
is not part of SIOOPERTEXT, we felt that this evaluation was necessary to confirm that th
detector was adequate for the task (for example, that thdtending boxes are neither too
small or too large). For these tests, we use&$IERACTs back-end (ESSBACK), the mod-
ule that attempts to parse the strings supposedly contairied regions identified by the text
detector.

TESSERACTIS publicly available at [6] but is designed for scanned donents. Robust
OCR algorithms especially designed for images of urban scsran active area of research,
and some recently advances were described by Wang et alM&8]jra et al. [39] and Neu-
mann and Matas [10]. However, an evaluation of OCR algoritisrbeyond the scope of this
paper.

Specifically, the goal of this section is to evaluate theoiwlhg points: (1) text regions
missed by the SOOPERTEXT really impacts on the text recognition performance; (2) OCR
designed for scanned documents are feasible in urban scCema®fore, we considered three
alternative algorithms, namely: the “perfect” detectargAL), that returns the manually an-

notated text regions from the reference fileSEERACTs front-end module (ESSFRONT);
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and that same module with its output filtered byG®PERTEXT'’s region validation module
(TESFRONTHT-HOG). See figures 15 and 17.

EBBACK

H3
MONTE
CHARGE
/|| CAFFE

|| TE5
|| FRANCO
|| ITALIENNES
| win

WE

TESSBACK

H3

MONTE
CHARGE

. || CAFFE

|| TE5

|| FRANCO

|| ITALIENNES

Figure 17: Examples of the reference text regions (top) bedt0OPERTEXT detection (bottom). At left, a
crop of the input image with the detected regions highlight&t right the OCR (ESSBACK) output for those
text regions. The correct readings of the reference regiozis'143", “MONTE”, “CHARGE" (2x), “CAFFE”
(2x), “TES”, “FRANCO” and "ITALIENNES".
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5.0.1. OCR-based performance metrics

For these comparisons, we used two scoring functions tkatitéo account the correct-
ness of the OCR-extracted text. Both functions assume thatrthgssare converted to lower
case, because it is often impossible to tell whether a texteffample, formed by the letters
C,0,S,U,V, X, Wand Z) in urban signage is in upper or lower case

We assume that the OCR algorithm attaches the extracteddemted by .ocr, to the
given rectangle. We define theigorous OCR similarity score’ for two rectangles ands

as

. 1 if m(r,s) > X and r.ocr = s.ocr
m'(r,s) = (4)
0 otherwise

wherem is the rectangle similarity function defined in equation ék)d\ is a fixed threshold
(0.2 in our tests).

The scoring functionn’ may be considered too rigorous, because at the currentaftate
the art one cannot expect that an OCR algorithm will correetad store and product names
which are missing from its spell-checking dictionary. Téfere, we also definedtalerant

OCR similarity scoren” that gives credit for partially correct OCR readings; namely

1 dist(r.ocr, s.ocr) if m(r,s) > A
max(|r.ocr|, |s.ocr|) (5)

0 otherwise

m”(r,s) =

Here |u| denotes the length of string anddist denotes the Levenshtein distance between
strings [40]. The latter is defined as the minimum number @f@ukrations needed to trans-
form one string into the other, where each operation is teertion, deletion, or substitution
of a single character. Since the Levenshtein distance duexoeed the length of the longest
string, the metrien”(r, s) ranges betwee(when the strings have no letters in common) and
1 (when the strings are equal).

As in section 4.4, we extend the scoring functiahto a set of OCR-scanned rectangles
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S by the formula

m'(r,S) = max m'(r, s) (6)

We then define theigorous OCR performance scoré¥ (precision) andr’ (recall) by the

Zm/(r, T) Z m/(r, E)

Pl — rekb R/ — reT 7

whereT is the set of manually identified text regions in all input gea, with theocr fields

formulas

set to the visually extracted text values, as recorded imeafezence file; and’ is the set of
text regions reported by the detector, with thesEBACK-computedocr fields. As before,
we combine the OCR precision and recall into a single OCR skbre 2/(1/P' + 1/R').
Thetolerant OCR performance scoré¥ R’, andF"” are defined in the same way, using
instead ofm’ in formulas (6-7).

Figure 18 illustrates the metrieg’ (equation 4) anadh” (equation 5) on some text regions

reported by SOOPERTEXT.

OCR scores
Rigorous Tolerant
System P | R | F P" | R" | F"
IDEAL 0.29] 0.29| 0.29| 0.50| 0.50| 0.50

SNOOPERIEXT 0.22] 0.18| 0.20 || 0.43| 0.37| 0.40
TESEFRONT+ T-HOG || 0.28 | 0.03| 0.06|| 0.45| 0.07| 0.12
TESSERONT 0.01] 0.05|/0.01(| 0.01| 0.10| 0.03

Table 5: OCR performance scores of thesSEERACTback-end with the three text detectors onlfi¢/ dataset.

5.1. Discussion

Table 5 shows that the rigorous OCR scdfeof SNOOPERTEXT on thelTW dataset

(20%), while low in absolute terms i68% of the score obtained witlDEAL text detector,
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........ r.ocr = FLEURS
s.ocr = FLEURS

m'= 1.00 {rigorous)
im"= 1.00 {tolerant}

r.ocr = TACO
s.0cr = TACO
m'= 1.00 {rigorous]

r.ocr = G5M
S.0Ccr = G5M
m'= 1.00 {rigorous}
m"= 1.00 {tolerant}

{rigorous)
(tolerant)

.00 ({rigorous)
.00 ({tolerant)

m .00 {rigorous}
m"= 0.75 {tolerant}

r.ocr = DARJEELING

s.0Ccr = DARJEELING
m'= 0,00 {rigorous)
" m"= 0.70 {tolerant} .
LinREEIT

Figure 18: The OCR similarity scores’(r, s) andm” (r, s) for various text regions extracted by 800oPER

.0Ccr = ZALES
.ocr = ES

! .00 {rigorous}
.40 (tolerant)

o

o 5. 0CT = UUU WaMu
0.00 {rigorous}
0.50 {tolerant)

TEXT+TESSBACK (solid outlines), and the best-matching regiansom the human-produced reference file
(dashed).

OCR scores
Rigorous Tolerant
System P | R | F P" | R" | F”
IDEAL 0.22] 0.22| 0.22| 0.40| 0.40| 0.40

SNOOPERTEXT 0.13| 0.20| 0.16| 0.21| 0.34| 0.26
TESEFRONT+ T-HOG || 0.46| 0.06| 0.11 | 0.57| 0.11| 0.18
TESSFRONT 0.01| 0.07| 0.02| 0.01| 0.12| 0.02

Table 6: OCR performance scores of thesSEERACTback-end with the three text detectors on \éT dataset.

(29%). The tolerant OCR scoré” of SNOOPERTEXT (40%) is 80% of the IDEAL score

(50%). In both aspects, SOOPERTEXT is significantly better that FSSERACTs front end,
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OCR scores

Rigorous Tolerant
System P | R | F P" | R" | F”
IDEAL 0.10| 0.10| 0.101 0.25| 0.25| 0.25
SNOOPERTEXT 0.06| 0.05| 0.05| 0.24| 0.18| 0.21
TESSRONT+ T-HOG || 0.24| 0.01| 0.01 || 0.38| 0.03| 0.06
TESSRONT 0.00| 0.01| 0.00| 0.01| 0.04| 0.01

Table 7: OCR performance scores of thesSEERACTback-end with the three text detectors onHrSdataset.

OCR scores
Rigorous Tolerant
System P | R | F P" | R" | F”
IDEAL 0.44| 0.44| 0.44| 0.55| 0.55| 0.55
SNOOPERTEXT 0.41| 0.29| 0.34| 0.57| 0.42| 0.49
TESFRONT+ T-HOG | 0.58| 0.12| 0.19| 0.75| 0.17| 0.28
TESSRONT 0.04] 0.16| 0.06 | 0.05| 0.22| 0.08

Table 8: OCR performance scores of thesSEERACTback-end with the three text detectors oni@B dataset.

even when the latter is combined with the T-HOG validatiordaoie. Therefore, we can say

that the OCR algorithm, not the text detector, is the maind¢ck of the iTowns system at

present.

Note that the OCR precision scor€$ and P” of SNOOPERTEXT are close to (or even

better than) those of theEAL text detector, because regions in the refererence file that a

difficult for TESSBACK tend to be missed byNM®OPERTEXT. See figure 19.

The low OCR scores on tHePSdataset (table 7), even with theBAL text detector, are
partly explained by the lower image quality and the smaliee sf the texts included in its

reference file, which even humans find hard to read. See figuréndeed, 252 text regions
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Figure 19: Examples of tougher text regions for text detsctmd OCRs. Samples from thEBW andEPSs

datasets.

(about13%) in the reference file do not even have a string annotatio tlaerefore will be

counted as errors even with an ideal OCR algorithm.

-.- N s BT~ -1 % 3)

Figure 20: Examples of text regions in tB®Sreference file without textual annotation.

6. Limitations

The SNOOPERTEXT errors seem to be due to texts that are near the low limit dbilay
(small in size, blurred, partly obscured by noise), to geoaptwo or more characters that
cannot be separated by the segmentation phase, and tedslelttérs that are discarded by the
grouping module. SOOPERTEXT does not detect vertical aligned text regions or extremely

tilted. See figure 21.

Figure 21: Text regions missed by the SOPERTEXT.
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7. Conclusions

The combination of our SOOPERTEXT detector with a standard OCR algorithm
(TESBACK) was used in the iTowns project to extract store signage #met eextual in-
formation from photos building facades. These stringseanakossible for iTowns users to
locate stores by textual queries on store names and prodQOctsa sample of the iTowns
images, SIOOPERTEXT was able to accurately locate aba0t% of the legible text regions,
with less thar80% of false positives.

We attribute SIOOPERTEXT’S success mainly to the use of multi-scale processing for
segmentation an character detection, and to its effectiterégion validation module based
on the T-HOG descriptor.

At present, the weakest spot in the iTowns text extractiatesy is the OCR algorithm,
that yields the correct string onl§0% of the time even when provided with an accurate
bounding box. For this reason, the end-to-end recall scbtlkeosystem (ROOPERTEXT
plus TESBACK) is only 18%, with 22% precision.

SNOOPERTEXT can also accurately locat®% of the text regions present the ICDAR
Challenge benchmark, with less thao% false positives. It is therefore competitive with
state-of-the-art text detectors.

For photos of urban scenesiSOPERTEXT is also significantly better thanEESERACTS
built-in text detector, that achieves only% recall with ands% precision (0r30% precision

if combined with SIOOPERTEXT’s T-HOG-based validator.)
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