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2Laboratoire d’Informatique Paris 6 (LIP6), Université Pierre et Marie Curie, Paris, France
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ERTEXT outperforms other published state-of-the-art text detection algorithms on standard
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1. Introduction

The detection of text embedded in images or videos of urban scenes is a challenging

problem in computer vision [1] with many potential applications, such as traffic monitoring,

geographic information systems, road navigation, and scene understanding. Here we consider

one particular application, the iTowns project [2], which aims to build tools for resource

location and immersive navigation in urban environments, similar to that of Google’s Street

View [3]. The main raw data for the iTowns project is a collection of GPS-tagged high-

resolution digital photos of the city, including several building façades, taken with a set of

car-mounted cameras. The raw images obtained by the car are stitched into geo-referenced

mosaics. The mean viewpoint spacing between photo sets is about one meter. See figure 1.

Figure 1: Imaging vehicle and example of an urban scene imagecaptured by the iTowns project.

The frontal images are then processed offline to extract any legible textual information,

such as street and traffic signs, store names, and building numbers. The extracted strings are

then stored in a geo-referenced database, which is used to answer textual queries by users—

for example, to locate the addresses of stores with a specified name or selling a specified

product. See figure 2.

The iTowns project could easily generate hundreds of thousands of such mosaics in a
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Figure 2: Result of a search for the query string “sushi” through the iTowns user interface. The textual informa-

tion was extracted with our text detection system.

single city. The manual annotation of all these images with the visible textual information

would be very time consuming and probably impractical. Clearly, automated algorithms for

this task are highly desirable.

The difficulties in this task mainly come from the diversity of the texts (including extreme

text size and font variations, and tilted or curved baselines), the complexity of the back-

grounds (including many vaguely text-like objects such as fences, windows, cobblestones,

etc) and difficult illumination conditions. OCR algorithms designed for scanned documents

perform very poorly on such photos. See figure 3(a). Much better results are obtained by

applying an OCR algorithm to the output of a text detector designed specifically for such

images, as illustrated in figure 3(b).

In this paper, we describe SNOOPERTEXT, the text detector we developed for the iTowns

project. SNOOPERTEXT initially locates candidate characters by using image segmentation

and a shape-based character/non-character binary classifier. The candidate characters found
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Figure 3: (a) A store-front photo from the iTowns image base and the output of the TESSERACTOCR software

applied over the whole image. (b) Text line regions identified by our detector and the output of the back-end of

the TESSERACTOCR software applied to those regions.

in this step, represented by their bounding boxes, are then grouped by simple geometric cri-

teria to form either candidate words or candidate text lines. These steps are performed in

a multi-scale fashion, in order to efficiently handle widelydifferent character sizes and to
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suppress irrelevant texture details inside the characters. Finally, the candidate text regions are

validated by a binary text/non-text classifier, that rejects any candidate region that does not

seem to contain a single line of text. This classifier uses theT-HOG descriptor [4], which is

based on the multi-cellhistogram of oriented gradients(HOG) of Dalal and Triggs [5]. The

regions found by SNOOPERTEXT are then fed to TESSERACT’s back-end for OCR process-

ing [6]. See figure 4.
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Figure 4: Overall diagram of the SNOOPERTEXT detector (a)–(d) and the OCR step (d)–(e).

Tests show that SNOOPERTEXT is comparable or better than other state-of-the-art text

detectors described in the literature [1, 7, 8, 9, 10, 11]. Inthis paper we also evaluate the end-

to-end performance of the complete system (SNOOPERTEXT with TESSERACT’s back-end),

measured by both approximate and exact string matching of the extracted and ground-truth

texts. As a collateral result, we show that we can improve theTESSERACTfront-end text

detector on street images by using SNOOPERTEXT’s T-HOG-based validation module to

filter out most of its false positives.
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The SNOOPERTEXT algorithm described and tested here is an improvement of a previous

work [12] in the use of the T-HOG descriptor for text-region validation and tunning of var-

ious internal algorithm parameters. We extended our previous work by describing in detail

each part of SNOOPERTEXT (character segmentation, geometric filtering, character grouping,

and multiscale processing), reporting its performance in additional databases, and showing

its use to improve the word recognition in urban scene images.

This paper is organized as follows. In section 2 we review theliterature on text detectors

and text/non-text classification, with emphasis on urban photos. The SNOOPERTEXT detector

is described in section 3, and its experimental evaluation is reported in sections 4 and 5.

Concluding remarks are provided in section 7.

2. Previous work

2.1. Text detection

There is an extensive literature on text detection. The survey of Jung et al. [13] and

Liang et al. [14] covers some systems up to 2005. Many approaches for text detection are

devoted to specific contexts, such as postal addresses on envelopes [15], cursive handwrit-

ing [16], license plates [17], etc. For natural scene processing, more generic systems have

been recently considered [1, 7, 8, 18].

Recently, some benchmarks [19, 20, 21] and challenges [22] were organized to give a

clear understanding of the current state-of-the-art of natural scene text detection algorithms.

Basically, two general approaches for text detection have been proposed:bottom-up, consist-

ing of character identification by analyzing the structuresthat make up text letters, such as

edges, textures, colors or connected components, followedby grouping into texts; andtop-

down, which look first for text regions, by exhaustively samplingsub-regions in the original

image with a sliding window mechanism, and then splitting those regions into characters.
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It is interesting to note that the two leading systems in the 2005 ICDAR challenge [22] rely

on different methodologies. The system of Hinnerk Becker [23] (winner of the 2005 ICDAR

challenge) is an example of bottom-up solution. It uses an adaptive binarization scheme

to extract character regions which are then combined into text lines according to certain

geometrical constraints. Alex Chen et al. [23] (second placein the 2005 ICDAR challenge)

developed a top-down approach that makes use of a statistical analysis over regions of the

frame to identify those that are likely to contain text. Then, they used a cascade of classifiers

trained over the chosen features to prune those candidates regions. Finally, those regions are

segmented into which are assumed to be text characters.

Most of the text detection systems for natural scenes have been evaluated in the ICDAR

dataset since 2005. Seven state-of-the-art systems, either top-down or bottom-up, are briefly

discussed in what follows.

In 2007, Mancas-Thillou and Gosselin [18] proposed a top-down color-based approach,

by clustering similar color together based on the Euclideandistance and a cosine-based simi-

larity, in the RGB color space, for character segmentation and extraction. The authors did not

focus in the text detection part, they assumed that the text regions were previously bounded.

They have used intensity and spatial information obtained by Log-Gabor filters to segment

characters into individual components. This approach is prone to fail in those texts with

similar colors for foreground and background.

In 2010, Epshtein et al. [7] proposed a bottom-up approach known as Stroke Width Trans-

form (SWT) to detect characters in images. They used the pixelgradients orientation over

image edges to determine a “local stroke width” and gather pixels with similar stroke widths

into regions which are likely to be characters. In addition,the authors provided a new anno-

tated benchmark with urban scene images taken with hand-held cameras [19].

In 2011 and 2012, Chen et al. [8] and Neumann et al. [10], proposed bottom-up meth-

ods based on Extremal Regions (ER). Chen et al. used Maximally Stable Extremal Regions
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(MSER), which are a subset of ER, for edge-enhancement in orderto candidate character de-

tection. The letter candidates were then filtered out using stroke width information computed

by the SWT. However, as observed by Neumann et al., MSER detectors have problems with

blurry images and characters with low contrast. Therefore,Neumann et al. used all ERs and

classified them as being characters or not by developing original features.

Also in 2011, Pan et al. [9] proposed an hybrid multi-scale approach for text detection.

They used a sliding window detector, in each scale of the pyramid, composed by a cascade

of classifiers trained over HOG features, to initially estimate the text positions. The estimates

were then used to enhance the original image in order to help the character segmentation.

Then, the authors performed character classification and grouping.

In 2012, Yi et al. [11] and Yao et al. [1] proposed bottom-up methods that uses the stroke

width information to character identification. As observedby Yi et al., the letter boundary,

used by the SWT, may be broken or connected to a non-text objectdue to background inter-

ference. To avoid this problem, the authors proposed an approach which combines edge pixel

clustering and the structural analysis of the stroke boundary with a color assignment proce-

dure. The character grouping was done by considering the geometric properties of nearby

characters. Yao et al. proposed an approach to detect texts in arbitrary orientations. The au-

thors used the SWT to character extraction and two layers of filters based on geometric and

statistical properties, as well as, a classifier trained with scale and rotation invariant features

to reject non-text characters found by the SWT. The charactergrouping was done by con-

sidering the stroke properties, geometric and color features of nearby characters. A greedy

hierarchical agglomerative clustering method was also applied to aggregate characters pairs

into candidate chains.
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2.2. Text classification

Comparatively little has been published about text/non-text classificationalgorithms, al-

though they are often present as post-filters in many text detectors.

Text classification is often cast as a texture classificationproblem, and several texture

descriptors have been considered in the literature. For instance, in 2004, Kim et al [24] de-

scribed a text recognizer that decomposes the candidate sub-image into a multiscale16 × 16

cell grid and compute wavelet moments for each block. Then each block is classified as text

or not using an SVM. The ratio of text to non-text outcomes is used to decide if the entire

sub-region is text or non-text. In 2005, Ye et al. [25] described a similar text recognizer with

multiscale wavelet decomposition but they used more elaborate features including moments,

energy, entropy, etc. In 2004, Chen and Yuille [26] proposed adescriptor that combines

several features, including 2D histograms of image intensity and gradient, computed sepa-

rately for the top, middle and bottom of the text region, as well as for more complex slices

subdivisions of the image—89 features in total.

Other text detectors, such as the one described by Anthimopoulos et al. in 2010, have used

descriptors based on multiscalelocal binary patterns(LBP) introduced by Ojala et al. [27].

Their descriptor has 256 features.

In 2012, Yi et al. [11] proposed a text line descriptor that combines the Gabor filter with

gradient and stroke information. They used the block patterns proposed by Chen and Yuille.

Their descriptor has 98 features.

The use of gradient orientation histograms (HOGs) as texture descriptors was introduced

by Dalal and Triggs in 2005 [5], for human recognition. HOG descriptors are used in some

recent text recognizers, such as the one proposed in 2008 by Pan et al. [28]. They partition

the candidate sub-image into 14 cells, as proposed by Chen andYuille, but compute for each

cell a 4-bin HOG complemented by a2× 3 array of LBP features. Their complete descriptor

has 140 features.
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Other HOG-based text recognizers have been proposed in 2009by Hanif and Prevost [29]

for single-line text, and Wang et al. [30] for isolated Chinese and Roman characters as well

as single-line text. Hanif and Prevost’s descriptor has 151features (16 cells each with a 8-bin

HOG, supplemented by 7 mean difference and 6 standard deviation features over 16 cells).

The descriptor of Wang et al. has 80 features (8 cells each with 10 features: a 8-bin HOG; 1

mean difference; and 1 standard deviation).

These HOG-based text recognizers, and several others, use vertical cuts as well as hori-

zontal ones when partitioning the candidate region. The useof vertical cuts was apparently

borrowed from the Dalal and Triggs paper [5] on pedestrian recognition. They may be jus-

tifiable for isolated characters, but they do not appear to beuseful for multi-character texts

of variable width. In such texts, the gradient distributionis largely independent of horizontal

position; therefore, a cell layout with vertical cuts increases the size of the descriptor without

providing any additional relevant information.

3. Text detection and classification

As shown in figure 4, the SNOOPERTEXT detector consists of three main modules: char-

acter detection, letter grouping, and text region validation.

3.1. Character detection

The structure of SNOOPERTEXT’s character detection module is outlined in figure 5. It

consists of three stages: foreground/background image segmentation, geometric filtering and

letter/non-letter classification. They are described in sub-sections 3.1.1–3.1.3. These steps

are applied in multi-scale fashion, as described in section3.3.

3.1.1. Image segmentation

The segmentation algorithm used in SNOOPERTEXT was developed by Fabrizio et al. [31].

It is a modified version of Serra’stoggle mapping[32], a morphological operator for local
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Figure 5: The letter detection stage of SNOOPERTEXT.

contrast enhancement and thresholding, using morphological erosions and dilations [33] to

define the local foreground and background levels.

Specifically, in order to segment the original input imageI, we first compute a local

background imageB by grayscale erosion (neighborhood minimum) and a local foreground

imageF by grayscale dilation (neighborhood maximum), using a9 × 9 squared structuring

element. Note thatB(x, y) ≤ I(x, y) ≤ F(x, y) for every pixelx, y. Then each pixelI(x, y)

is mapped to a ternary class valueD(x, y) ∈ {0, 1, 2} as follows. If|F(x, y)−B(x, y)| is less

than a fixed thresholdcmin, thenD(x, y) is set to 1 (indeterminate). Otherwise,D(x, y) is set

to 0 (presumed background) or 2 (presumed foreground) depending on whether the relative

brightness|I(x, y)−B(x, y)|/|F(x, y)−B(x, y)| is less than or greater than another threshold
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t.

Since the thresholding is not symmetrical between dark and light regions, and target

scenes often have light text on dark background, the segmentation is repeated on the neg-

ative (pixel-wise complemented) image. See figure 6.

(a) (b)

Figure 6: (a) Toggle segmentation of the positive image intobackground (dark gray), foreground (white) and

indeterminate (light gray) pixels. (b) Toggle segmentation of the negative image.

3.1.2. Geometric filtering

The foreground regions (letter candidates) from both segmentations (positive and nega-

tive) are filtered by simple geometric criteria, based on theareaA, width w, and heighth of

their bounding boxes (minimal axis-aligned enclosing rectangles). Namely, a letter candidate

region is accepted iff

Amin ≤ A ≤ Amax

wmin ≤ w ≤ wmax

hmin ≤ h ≤ hmax

whereAmin, Amax, wmin, wmax, hmin andhmax, are internal parameters of SNOOPERTEXT

and depends on the size range of the letters. See figure 7.
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(a) (b)

Figure 7: (a) The regions found by segmentation; (b) The surviving regions after the geometric filtering.

3.1.3. Letter/non-letter classification

For each box that passes the geometric criteria, the algorithm extracts from the corre-

sponding segmented region three scale- and rotation-invariant shape descriptors: Fourier mo-

ments, pseudo-Zernike moments, and an original polar encoding [31]. These descriptors are

fed to three separate SVM classifiers, whose numeric outputsare packed as a three-element

vector and fed to a final SVM classifier [34]. The output of the final SVM is then thresholded

to yield a binary letter/non-letter decision. See figure 8.

SVM

SVM

SVM

SVM

Fourier
Descriptor

Pseudo Zernike
Moments

Polar
Descriptor

Yes/No

Figure 8: The letter/non-letter classifier of the characterdetection module.

These SVM were trained on a dataset of bi-level images selected by hand from the output

of the segmentation and geometric filtering phases, comprising 16200 instances of uppercase

and lowercase letters (positive samples) and 16200 randomly chosen non-letter segments

(negative samples). See figure 9.

3.2. Letter grouping

SNOOPERTEXT’s character grouping module joins the candidate letters found by the char-
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Figure 9: Some of the positive and negative segmented shapesused to train the letter/non-letter classifier.

acter detector into text regions — which may be either words or text lines — according to

geometric criteria defined by Retornaz and Marcotegui [35]. These criteria take into account

the heightsh1, h2 and widthsw1, w2 of the two bounding boxes, as well as the coordinates

(x1, y1) and(x2, y2) of their centers. See figure 10.

dx

dy

(x2, y2)
(x1, y1)

h1

h2

w2

w1

Figure 10: Geometric parameters used for letter grouping.

Specifically, leth = min(h1, h2), dx = |x1 − x2| − (w1 + w2)/2 anddy = |y1 − y2|. Note

thatdx is negative iff the two boxes overlap in thex direction. Then the two boxes are said to
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becompatible— that is, assumed to belong to the same text word or line — iff

|h1 − h2| < t1 h

dx < t2 h

dy < t3 h

wheret1, t2 andt3 are parameters of the module. The parametert2, in particular, determines

whether the groups will be words or text lines, whilet3 controls whether multiple lines are to

be merged into text blocks.

These criteria are applied to all pairs of detected characters. The groups are the equiva-

lence classes of the transitive closure of this compatibility relation.

At this stage, letters that were not joined to any group are discarded. This requirement

normally eliminates a large fraction of the false positives(non-letter regions classified as let-

ters by the previous steps). Each group is then summarized bya single axis-aligned rectangle,

which is the bounding box of its component letters. See figure11.

Figure 11: Grouping letters into text words.

The grouping module is applied separately to the candidatesfound in each segmentation

(positive and negative). Then the two lists of candidate text regions are merged, and any two

regions that have significant overlap (70%) are fused into a single region.

3.3. Multi-scale processing

The segmentation and character/non-character recognition phases perform rather poorly

if used at a single scale. Text embedded in photos of urban scene may have characters of
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widely different sizes and styles. Characters that are much larger than the structuring element

used in the morphological thresholding are often over-segmented. To overcome this problem,

those two steps described above are applied in a multi-scalefashion [36]. At each resolution

level, the segmentation is applied to a reduced version of the input image, with the goal

of detecting characters of a limited size range, and automatically ignoring small irrelevant

details of character shape and texture.

More precisely, for each imageI, SNOOPERTEXT first builds a multi-scaleimage pyramid

I
(0), I(1), . . . , I(m). The baseI(0) of the pyramid is the original imageI, and each levelI(l) is

a copy of the next lower oneI(l−1), reduced to half its width and half its height (so that level

I
(l) has1/4l as many pixels as levelI

(0)). The maximum levelm depends on the size of the

original image and the minimum size of the characters to be detected.

The segmentation, character/non-character classification, and grouping steps are applied

separately to each level of the pyramid. At each level, the algorithm only looks for letters

whose areas lie in the range[Amin . . . Amax], defined in section 3.1.2, which corresponds

to the size range[4lAmin . . . 4lAmax] in the original image. The parametersAmin andAmax

are chosen so that there is some overlap between two consecutive scalesl andl + 1, namely

Amax > 4Amin. Similar considerations apply to the linear patameterhmin, hmax, wmin, and

wmax. Segmented regions whose area fall outside the interval[Amin . . . Amax] are ignored,

since they are expected to be found at other scales. See figure12. One advantage of the multi-

scale approach is that we can use use a structuring element offixed (and modest) size in each

morphological operation, with significant speed gains. Note that the cost of processing the

whole image pyramid, for letters of any size, is only
∑l

i=0 1/4i ≈ 4/3 times the cost of

processing the original image for letters within the fixed ranges of section 3.1.2.

Another advantage of the multi-scale approach is that it makes the segmentation algorithm

insensitive to letter texture — high frequency details thatare much smaller than the letters

themselves. Those details may cause each letter to be split into several separate segments, and
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Level 0 Level 0

Level 1 Level 1

Level 2 Level 2

Figure 12: Example of multiscale segmentation and letter detection, showing accepted candidate letters (left)

and accepted text lines (right) at each level.

will tend to confuse the the character/non-character classifier. With the multi-scale approach,

these problems are largely avoided when the segmentation procedure is applied the scale

where the letters are still legible but those finer details have been blurred away. See figure 13.
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Level 0 Level 0

Level 1 Level 1

Level 2 Level 2

Figure 13: Example of multiscale segmentation and letter detection, illustrating texture suppression at the proper

scale. Note that the letters of ‘SIGNO’ are oversegmented inlevels 0 and 1 but correctly segmented and recog-

nized (black boxes) in level 2.

3.4. Text region validation module

The character detection module analyzes only the segmentedcharacter shapes in isolation,

and the character grouping module looks only at their bounding boxes. In order to obtain a
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good end-to-end recall score, these two modules must be tuned to accept a high rate of false

positives—regions that are mis-identified as characters and grouped into spurious text line

candidates. See figure 14.

Figure 14: Some examples of false positives found by the character detection and grouping modules.

The task of SNOOPERTEXT’s region validation module is to weed out these false positives,

by analyzing the image content of each candidate text regionas a whole.

This module is basically a texture classifier, based on the T-HOG descriptor [4]. The

latter is a variant of Dalal and Triggs’s R-HOG descriptor [5], specialized to capture the

gradient distribution characteristic of letter strokes inoccidental-like scripts. The T-HOG

descriptor is fed to an SVM classifier, whose output is thresholded to give a binary text/non-

text classification.

The T-HOG descriptor is based on the observation by Chen and Yuille (2004) that dif-

ferent parts of Ocidental-like text have distinctive distributions of edge directions [26]. That

is because images that consist of bi-level strokes (such as Roman letters), the orientations of

the strongest gradients tell the orientations of those strokes.

The HOG-based text/non-text discriminators reported in the literature generally use a two-

dimensional array ofnx × ny cells, as Dalal and Triggs used for human body recognition [5].

The use of a two-dimensional cell array may be justifiable forisolated characters, but does

not seem to be useful for multi-character texts of variable width. In such texts, the gradient

distribution is largely independent of horizontal position; therefore, a cell layout with vertical

cuts increases the size of the descriptor without providingany additional relevant information.
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The detailed description of the T-HOG descriptor and its experimental analysis have been

published separately [4]. To obtain the descriptor, the image I delimited by the candidate

rectangle is first extracted, converted to grayscale, scaled to a fixed heightH, preserving its

aspect ratio, and normalized for local variations of brightness and contrast with a Gaussian

weight window. The sub-image is then divided into a small fixed numberny of horizontal

stripes, and a histogram withnb of bins is built for each stripe. Specificaly, the image gradient

is computed at each pixel within the stripe, its direction isquantized into a small numbernb of

equal angular ranges, and the corresponding bins of the histogram are incremented. Opposite

directions are identified, so each bin isπ/nb radians wide. The T-HOG descriptor is the

concatenation of thoseny histograms.

The contribution of each pixel to the histogram is weighted by the gradient’s norm, so that

the small gradients that result from camera and quantization noise are largely ignored. Both

the stripes and the histogram bins have gradual boundaries in order to minimize the impact

of small vertical shifts and rotations of the text inside thebounding box.

Indeed, through extensive experiments [4] we confirmed that, for any descriptor length,

the partition into horizontal stripes was generally more effective than a two-dimensional ar-

rangement. Moreover, near-optimal results could be obtained with fairly small descriptors:

we are usingny = 7 andnb = 9 in SNOOPERTEXT, but if used insteadny = 4 andnb = 5

we would reduce the descriptor size to 20 while lowering the scores by 1 to 2% on average.

We also found that pre-scaling the given text region to a small fixed heightH (currently

24 pixels) was more efective than computing the HOGs at the original resolution. We believe

that this resizing step is a good balance between preservation of useful detail and removal of

noise and spurious texture
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4. Performance of the text detector

In this section, we compared the performance of SNOOPERTEXT with that of other text

detectors published in the literature, in their ability to locate text lines.

4.1. Image collections

For our tests, we used four image collections, described below. For each of these datasets

we have areference filecontaining the bounding boxes of its text regions and the correspond-

ing text contents, in a simple XML format.

1. ITW: a subset of the iTowns Project’s image collection [2], consisting of 100 frontal

high-resolution color photos of Parisian façades, with1080 × 1920 pixels, as taken by

the iTowns vehicle. The reference file, containing848 readable text words, is available

on-line [37].

2. SVT: a public benchmark of 249 urban photos selected from the Google Street View

images by Wang et al., ranging from1024 × 768 to 1918 × 898 pixels. The reference

file contains 647 readable words [20].

3. EPS: the benchmark used by Epshtein et al. [7], with307 color images of urban scenes,

ranging from1024 × 768 to 1024 × 1360 pixels, taken with hand-held cameras. The

reference file, containing1981 readable text lines, was provided by the authors [19]

and converted to XML by us [37].

4. ICD: the “testing” half of the 2005 ICDAR Challenge collection [22], consisting of

249 color images, ranging from307 × 93 to 1280 × 960 pixels, captured with various

digital cameras, of book covers, road signs, posters, etc. The reference file, containing

1107 readable text words, was provided by the Challenge organizers.

TheICD collection is not very appropriate for our purposes, since it has images with just

one single big character, photos of book covers, etc. We included it because it is a popular
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benchmark for text detection, and it is the only one for whichwe have several performance

of other detectors.

4.2. Parameter settings

The SNOOPERTEXT parameters, described in section 3, were set as follows: an image

pyramid heightm = 3 levels; minimum constrastcmin = 8 for ITW, ICD andSVTdatasets,

and cmin = 12 for EPS dataset; relative thresholdt = 0.79; maximum height difference

t1 = 1.1; the t2 parameter (maximum relative letter spacing) was set differently for each

dataset so that characters would be grouped in the same way asin the corresponding reference

file: namely, into words forITW, ICD andSVT(t2 = 0.4), and into lines forEPS(t2 = 0.8);

and merging of multiple linest3 = 0.7.

The T-HOG was trained with the true and false positives regions reported by the character

detection and grouping modules of SNOOPERTEXT, when applied to the “training” subset of

theICD image dataset and with ground-truth text regions. The T-HOGSVM used a Gaussian

χ2 kernel, whose standard deviation was found by cross-validation.

4.3. Competing detectors

We compared SNOOPERTEXT against several state-of-the-art text detectors described in

the literature. Specifically, we compared it with the contestants of the ICDAR Challenge [23],

and also with the detectors of Yao et al. [1], Epshtein et al. [7], H. Chen et al. [8], Pan et al. [9],

Neumann et al. [10] and Yi et al. [11]. (The system of Mancas-Thillou and Gosselin [18] uses

the text detector of Alex Chen, which is included in our set.)

We added to our list of competing text detectors the front-end module of the popular

open-source TESSERACTOCR software (TESSFRONT), whose task is to locate the candidate

text regions in the input image before calling the back-end (TESSFRONT) to parse them.

TESSERACTis considered one of the best OCRs publicly available today [6]; however, its
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front-end was designed for scanned documents, and it usually reports a large number of false

positives when applied to photos of 3D scenes. See figure 15 (top). Therefore, we also added

to our list of competing detectors the combination of TESSFRONT with the T-HOG as an

output filter (TESSFRONT+T-HOG). See figure 15 (bottom).

4.4. Rectangle-based performance metrics

The quantitative criteria we used to compare these text detector systems are based on the

ICDAR 2005 measure of similarity [23] between two rectanglesr, s, defined as

m(r, s) =
A(r ∩ s)

A(r ∪ s)
(1)

whereA(t) is the area of the smallest rectangle enclosing the sett. The functionm(r, s)

ranges between0 (if the rectangles are disjoint) and1 (if they are identical). See figure 16.

The functionm is extended to a set of rectanglesS by the formula

m(r, S) = max
s∈S

m(r, s) (2)

From this indicator one derives the ICDARprecisionP andrecall R scores [23],

P =

∑

r∈E

m(r, T )

#E
R =

∑

r∈T

m(r, E)

#T
(3)

whereT is the set of rectangles in the reference file, andE is the set of rectangles reported

by the detector.

For ranking purposes, the ICDAR 2005 Committee used theF -measure[23], which is

the harmonic mean of precision and recall:F = 2/(1/P + 1/R).

4.5. Computing average scores

There are several ways of averaging theP , R, andF scores over a multi-image database.

The approach used by the ICDAR 2005 scoring program (method I)is to evaluateP,R and
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Figure 15: Examples of the TESSFRONT detector output (top) and TESSFRONT with T-HOG post filter (bot-

tom). At left, the input image with the detected regions highlighted. At right the OCR (TESSBACK) output for

those text regions.

24



Figure 16: The rectangle similarity scorem(r, s) for various text regionss detected by SNOOPERTEXT (solid

outlines) and the best-matching regionsr from the reference file (dashed).

F separately for each image, and then compute the arithmetic mean of all three scores over

all images. Another approach (method II) is to computeP andR for each image, then take

the arithmetic means of allP andR values, and computeF from these means. Yet another

approach (method III) is to compute the precision and recallformulas ( 3) by takingE and

T as the union of all text regions in all images. We note that averaging method I suffers

from higher sampling noise and a negative bias compared to the other two, because it gives

equal weight to each image irrespective of the number of recoverable text objects in it and

theF -score is a non-linear function of theP andR rates. In particular, the averagedF score

(method I) tends to be lower than the harmonic mean of averaged P andR (method II).

This point must be considered when comparingF values reported by different authors,

since it is not always clear how they were averaged.
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4.6. Results of text detection evaluation

The text detection scores on the four image collections are shown in tables 1–4. For our

comparisons, in order to match the other entries, we had to recomputed the overalF score

ourselves (according to the averaging method II), for all detectors, from the globalP andR

scores reported by the authors. We could not use method III because, for most competitors,

the required data (the set of rectangles detected in each image) was not available.

Detection scores

System P R F

SNOOPERTEXT 0.72 0.50 0.59
TESSFRONT+T-HOG 0.30 0.13 0.18

TESSFRONT 0.05 0.15 0.07

Table 1: Text detection scores of SNOOPERTEXT and other detectors on theITW dataset.

Detection scores

System P R F

SNOOPERTEXT 0.36 0.51 0.42
Neumann et al. [10] 0.19 0.33 0.26

TESSFRONT + T-HOG 0.15 0.15 0.15
TESSFRONT 0.04 0.18 0.06

Table 2: Text detection scores of SNOOPERTEXT and other detectors on theSVTdataset.

4.7. Discussion

As can be seen in table 1, the performance of SNOOPERTEXT was much better than that

of TESSFRONT (which was not designed for photos of outdoor scenes), even using high

resolution images of theITW dataset. When we consider the two challenging urban scene

datasetsSVTandEPS, tables 2–3, with text in different orientations and imageswith noise,
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Detection scores

System P R F

SNOOPERTEXT 0.59 0.47 0.52
Epshtein et al. [7] 0.54 0.42 0.47

TESSFRONT+T-HOG 0.21 0.10 0.13
TESSFRONT 0.02 0.14 0.04

Table 3: Text detection scores of SNOOPERTEXT and other detectors on theEPSdataset.

Detection scores

System P R F

Yi et al. [11] 0.73 0.67 0.70
Pan et al. [9] 0.67 0.70 0.69

SNOOPERTEXT 0.73 0.61 0.67
Yao et al. [1] 0.69 0.66 0.67

H. Chen et al. [8] 0.73 0.60 0.66
Epshtein et al. [7] 0.73 0.60 0.66
Hinnerk Becker† 0.62 0.67 0.64

Alex Chen† 0.60 0.60 0.60
Ashida† 0.55 0.46 0.50

HWDavid† 0.44 0.46 0.45
Wolf† 0.30 0.44 0.36

Qiang Zhu† 0.33 0.40 0.36
TESSFRONT+T-HOG 0.35 0.27 0.30

Jisoo Kim† 0.22 0.28 0.25
Nobuo Ezaki† 0.18 0.36 0.24
TESSFRONT 0.18 0.29 0.22

Todoran† 0.19 0.18 0.19

Table 4: Text detection scores of SNOOPERTEXT and other detectors on theICD dataset. The competitors of

the ICDAR 2003 and 2005 challenges are marked with†.
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the SNOOPERTEXT improved theF score by16% and5%, respectively, over the second best.

Note in table 3, that SNOOPERTEXT outperformed the Stroke Width Transform (SWT) [7] of

Epshtein et al. on their own dataset.

In the ICD dataset, table 4, the performance of SNOOPERTEXT is comparable to that of

the best detectors described in the literature.

As can be seen in tables 1–4, filtering the output of TESSFRONT through our text region

validation module significantly improved its precision with little loss of recall.

5. End-to-end performance

We also measured the correctness of the strings extracted from the SNOOPERTEXT-

detected regions by the OCR algorithm used in the iTowns application. Although the latter

is not part of SNOOPERTEXT, we felt that this evaluation was necessary to confirm that the

detector was adequate for the task (for example, that the text bounding boxes are neither too

small or too large). For these tests, we used TESSERACT’s back-end (TESSBACK), the mod-

ule that attempts to parse the strings supposedly containedin the regions identified by the text

detector.

TESSERACTis publicly available at [6] but is designed for scanned documents. Robust

OCR algorithms especially designed for images of urban scenes is an active area of research,

and some recently advances were described by Wang et al. [38], Mishra et al. [39] and Neu-

mann and Matas [10]. However, an evaluation of OCR algorithmsis beyond the scope of this

paper.

Specifically, the goal of this section is to evaluate the following points: (1) text regions

missed by the SNOOPERTEXT really impacts on the text recognition performance; (2) OCR

designed for scanned documents are feasible in urban scenes. Therefore, we considered three

alternative algorithms, namely: the “perfect” detector (IDEAL), that returns the manually an-

notated text regions from the reference file; TESSERACT’s front-end module (TESSFRONT);
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and that same module with its output filtered by SNOOPERTEXT’s region validation module

(TESSFRONT+T-HOG). See figures 15 and 17.

Reference text regions TESSBACK
H3
MONTE
CHARGE
CAFFE
TE5
FRANCO
ITALIENNES
WI!
WE

SNOOPERTEXT TESSBACK
H3
MONTE
CHARGE
CAFFE
TE5
FRANCO
ITALIENNES

Figure 17: Examples of the reference text regions (top) and the SNOOPERTEXT detection (bottom). At left, a

crop of the input image with the detected regions highlighted. At right the OCR (TESSBACK) output for those

text regions. The correct readings of the reference regionsare: “143”, “MONTE”, “CHARGE” (2x), “CAFFE”

(2x), “TES”, “FRANCO” and ”ITALIENNES”.
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5.0.1. OCR-based performance metrics

For these comparisons, we used two scoring functions that take into account the correct-

ness of the OCR-extracted text. Both functions assume that the strings are converted to lower

case, because it is often impossible to tell whether a text (for example, formed by the letters

C, O, S, U, V, X, W and Z) in urban signage is in upper or lower case.

We assume that the OCR algorithm attaches the extracted text,denoted byr.ocr , to the

given rectangler. We define therigorous OCR similarity scorem′ for two rectanglesr ands

as

m′(r, s) =







1 if m(r, s) ≥ λ and r.ocr = s.ocr

0 otherwise
(4)

wherem is the rectangle similarity function defined in equation (1), andλ is a fixed threshold

(0.2 in our tests).

The scoring functionm′ may be considered too rigorous, because at the current stateof

the art one cannot expect that an OCR algorithm will correctlyread store and product names

which are missing from its spell-checking dictionary. Therefore, we also defined atolerant

OCR similarity scorem′′ that gives credit for partially correct OCR readings; namely,

m′′(r, s) =







1 −
dist(r.ocr , s.ocr)

max(|r.ocr |, |s.ocr |)
if m(r, s) ≥ λ

0 otherwise
(5)

Here |u| denotes the length of stringu, anddist denotes the Levenshtein distance between

strings [40]. The latter is defined as the minimum number of edit operations needed to trans-

form one string into the other, where each operation is the insertion, deletion, or substitution

of a single character. Since the Levenshtein distance does not exceed the length of the longest

string, the metricm′′(r, s) ranges between0 (when the strings have no letters in common) and

1 (when the strings are equal).

As in section 4.4, we extend the scoring functionm′ to a set of OCR-scanned rectangles
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S by the formula

m′(r, S) = max
s∈S

m′(r, s) (6)

We then define therigorous OCR performance scoresP ′ (precision) andR′ (recall) by the

formulas

P ′ =

∑

r∈E

m′(r, T )

#E
R′ =

∑

r∈T

m′(r, E)

#T
(7)

whereT is the set of manually identified text regions in all input images, with theocr fields

set to the visually extracted text values, as recorded in thereference file; andE is the set of

text regions reported by the detector, with the TESSBACK-computedocr fields. As before,

we combine the OCR precision and recall into a single OCR scoreF ′ = 2/(1/P ′ + 1/R′).

Thetolerant OCR performance scoresP ′′ R′′, andF ′′ are defined in the same way, usingm′′

instead ofm′ in formulas (6–7).

Figure 18 illustrates the metricsm′ (equation 4) andm′′ (equation 5) on some text regions

reported by SNOOPERTEXT.

OCR scores

Rigorous Tolerant

System P ′ R′ F ′ P ′′ R′′ F ′′

IDEAL 0.29 0.29 0.29 0.50 0.50 0.50
SNOOPERTEXT 0.22 0.18 0.20 0.43 0.37 0.40

TESSFRONT + T-HOG 0.28 0.03 0.06 0.45 0.07 0.12
TESSFRONT 0.01 0.05 0.01 0.01 0.10 0.03

Table 5: OCR performance scores of the TESSERACTback-end with the three text detectors on theITW dataset.

5.1. Discussion

Table 5 shows that the rigorous OCR scoreF ′ of SNOOPERTEXT on theITW dataset

(20%), while low in absolute terms is68% of the score obtained with IDEAL text detector,
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Figure 18: The OCR similarity scoresm′(r, s) andm
′′(r, s) for various text regionsr extracted by SNOOPER-

TEXT+TESSBACK (solid outlines), and the best-matching regionss from the human-produced reference file

(dashed).

OCR scores

Rigorous Tolerant

System P ′ R′ F ′ P ′′ R′′ F ′′

IDEAL 0.22 0.22 0.22 0.40 0.40 0.40
SNOOPERTEXT 0.13 0.20 0.16 0.21 0.34 0.26

TESSFRONT + T-HOG 0.46 0.06 0.11 0.57 0.11 0.18
TESSFRONT 0.01 0.07 0.02 0.01 0.12 0.02

Table 6: OCR performance scores of the TESSERACTback-end with the three text detectors on theSVTdataset.

(29%). The tolerant OCR scoreF ′′ of SNOOPERTEXT (40%) is 80% of the IDEAL score

(50%). In both aspects, SNOOPERTEXT is significantly better that TESSERACT’s front end,
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OCR scores

Rigorous Tolerant

System P ′ R′ F ′ P ′′ R′′ F ′′

IDEAL 0.10 0.10 0.10 0.25 0.25 0.25
SNOOPERTEXT 0.06 0.05 0.05 0.24 0.18 0.21

TESSFRONT + T-HOG 0.24 0.01 0.01 0.38 0.03 0.06
TESSFRONT 0.00 0.01 0.00 0.01 0.04 0.01

Table 7: OCR performance scores of the TESSERACTback-end with the three text detectors on theEPSdataset.

OCR scores

Rigorous Tolerant

System P ′ R′ F ′ P ′′ R′′ F ′′

IDEAL 0.44 0.44 0.44 0.55 0.55 0.55
SNOOPERTEXT 0.41 0.29 0.34 0.57 0.42 0.49

TESSFRONT + T-HOG 0.58 0.12 0.19 0.75 0.17 0.28
TESSFRONT 0.04 0.16 0.06 0.05 0.22 0.08

Table 8: OCR performance scores of the TESSERACTback-end with the three text detectors on theICD dataset.

even when the latter is combined with the T-HOG validation module. Therefore, we can say

that the OCR algorithm, not the text detector, is the main bottleneck of the iTowns system at

present.

Note that the OCR precision scoresP ′ andP ′′ of SNOOPERTEXT are close to (or even

better than) those of the IDEAL text detector, because regions in the refererence file that are

difficult for TESSBACK tend to be missed by SNOOPERTEXT. See figure 19.

The low OCR scores on theEPSdataset (table 7), even with the IDEAL text detector, are

partly explained by the lower image quality and the smaller size of the texts included in its

reference file, which even humans find hard to read. See figure 20. Indeed, 252 text regions
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Figure 19: Examples of tougher text regions for text detectors and OCRs. Samples from theITW andEPSs

datasets.

(about13%) in the reference file do not even have a string annotation, and therefore will be

counted as errors even with an ideal OCR algorithm.

Figure 20: Examples of text regions in theEPSreference file without textual annotation.

6. Limitations

The SNOOPERTEXT errors seem to be due to texts that are near the low limit of legibility

(small in size, blurred, partly obscured by noise), to groups of two or more characters that

cannot be separated by the segmentation phase, and to isolated letters that are discarded by the

grouping module. SNOOPERTEXT does not detect vertical aligned text regions or extremely

tilted. See figure 21.

Figure 21: Text regions missed by the SNOOPERTEXT.
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7. Conclusions

The combination of our SNOOPERTEXT detector with a standard OCR algorithm

(TESSBACK) was used in the iTowns project to extract store signage and other textual in-

formation from photos building façades. These strings make it possible for iTowns users to

locate stores by textual queries on store names and products. On a sample of the iTowns

images, SNOOPERTEXT was able to accurately locate about50% of the legible text regions,

with less than30% of false positives.

We attribute SNOOPERTEXT’s success mainly to the use of multi-scale processing for

segmentation an character detection, and to its effective text region validation module based

on the T-HOG descriptor.

At present, the weakest spot in the iTowns text extraction system is the OCR algorithm,

that yields the correct string only30% of the time even when provided with an accurate

bounding box. For this reason, the end-to-end recall score of the system (SNOOPERTEXT

plus TESSBACK) is only18%, with 22% precision.

SNOOPERTEXT can also accurately locate60% of the text regions present the ICDAR

Challenge benchmark, with less than30% false positives. It is therefore competitive with

state-of-the-art text detectors.

For photos of urban scenes SNOOPERTEXT is also significantly better than TESSERACT’s

built-in text detector, that achieves only15% recall with and5% precision (or30% precision

if combined with SNOOPERTEXT’s T-HOG-based validator.)
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