
Public Health Complaint Software Product Line

Leonardo Pondian Tizzei∗ Cećılia Mary Fischer Rubira†

August 29, 2011

∗Institute of Computing - University of Campinas - e-mail: tizzei@ic.unicamp.br
†Institute of Computing - University of Campinas - e-mail: cmrubira@ic.unicamp.br

1

2

Contents

1 Introduction 4

2 Reverse engineering 4

2.1 Design Recovery . 5

2.2 Domain Analysis . 6

2.2.1 Product Features . 6

2.2.2 Feature Groups . 6

3 Analysis 6

3.1 Nonfunctional requirements . 6

3.1.1 Usability [NFR01] . 9

3.1.2 Availability/Exception Handling [NFR02] . 9

3.1.3 Performance/Response time [NFR03] . 9

3.1.4 Encryption/Security [NFR04] . 10

3.1.5 Standards/Compatibility [NFR05] . 10

3.1.6 Harware and Software/Operational environment [NFR06] 10

3.1.7 Distribution [NFR07] . 10

3.1.8 (Flexible) Storage medium/Persistence [NFR08] 10

3.1.9 Concurrency [NFR09] . 10

3.2 Use cases specification . 11

3.2.1 Functional Use Cases . 11

3.2.2 Nonfunctional Use Cases . 24

3.2.3 Exception Handling Flow in Use Cases . 25

3.2.4 Crosscutting Use Cases . 33

3.2.5 Relationship between nonfunctional requirements and use cases 33

3.2.6 Mapping Features to Use Cases . 33

3.3 Identifying and composing crosscutting concerns . 35

3.4 Aspect-oriented Feature Analysis . 35

4 Design 36

4.1 From feature model to architecture model . 36

4.1.1 Removing non-architecture related features and Resolving quality features . . 37

4.1.2 Transforming based on architectural requirements 38

4.1.3 Transforming based on interacts relations . 38

4.1.4 Transform based on hierarchy relations . 38

4.1.5 Aspect-oriented feature transformations . 39

4.2 Initial architecture design . 39

4.3 Interface identification and architecture refinement 39

5 Provisioning 42

5.1 Evaluation of legacy components . 42

5.2 Component implementation and refactoring . 42

5.3 Connectors specification and implementation . 43

Public Health Complaint Software Product Line 3

6 Data collection and analysis 43

A From feature diagram and aspect-oriented feature view to product line archi-
tecture 44

B Scripts 44

4

Abstract

1 Introduction

Software product line (SPL) engineering is a paradigm to develop software applications using core
assets and mass customization [38]. The extractive adoption of a SPL capitalizes on existing
system [32], and focuses on reusing software assets of existing products in order to reduce costs.
This approach is very appropriate when the collection of products has a significant amount of
commonality and differences among them [30]. The Feature-oriented reengineering process is an
example of extractive approach, which provides guidelines to build a SPL from legacy software
assets by using feature model to support the creation of other development assets, such as the
product line architecture [28]. Feature model is usually applied to represent the commonalities and
variabilities of a SPL.

Aspect-oriented Programming (AOP) can support extractive SPL adoption by inserting vari-
ability on existing components and by wrapping crosscutting concerns [49]. Crosscutting concerns
are concerns that cut across other concerns and are responsible for producing tangled represen-
tations that are difficult to understand and maintain [39]. AOP can facilitate the integration of
existing components by implementing glue-code [31]. Furthermore, there are evidences that the
use of aspects supports the design of stable PLA [21, 46, 48]. However, existing feature-oriented
reengineering approaches does not provide support for aspect-oriented techniques.

We propose a feature-oriented product line approach, which uses aspect-oriented techniques to
support separation of concerns throughout the adoption process. Instead of creating the entire
approach from scratch, as feature-oriented software development is a solid discipline we combined
existing feature-oriented approaches to achieve our goal. When necessary, we also extended feature-
oriented techniques to support reasoning about crosscutting concerns.

As integrating existing techniques is a difficult task, we performed an exploratory case study
to assess the feasibility of our approach. Three legacy applications from the same domain have
been chosen and we have executed the approach to produce a software product line from which
three products can be derived, one for each corresponding legacy application. Another objective of
the case study is to promote empirical studies with product lines, since there is lack of empirical
studies in this area. Award-winning product lines are usually commercial systems which are not
publicly available for conducting research [16]. Therefore, we made available all artifacts (e.g.
feature diagrams, architecture, source codes) produced for the product line adoption.

2 Reverse engineering

The reverse engineering phase is important to capitalize on existing artifacts [32]. Models such as
architectures and component specification support developers and domain analysts to understand
legacy applications and understanding is a key factor for reuse [23]. Figure 1 shows the main
activities of reverse engineering phase, which is based on Lee et al. [32].

Public Health Complaint Software Product Line 5

Figure 1: Reverse engineering activities

2.1 Design Recovery

The Design recovery activity can be supported by CASE tools such as Enterprise Architect 1. The
result of this activity is a set of legacy architectures for each corresponding application.

Figure 2: Component-based Architecture of Legacy Healthwatcher (based on Healthwatcher legacy
architecture [3])

1http://www.sparxsystems.com/products/ea/downloads.html

6

2.2 Domain Analysis

Domain analysis defines product line features based on legacy application features and market
needs [28], that is, legacy application features can be removed or changed and new features can be
added due to market needs. Thus, both features that have been implemented and features that
will be implemented must be represented in the feature diagram. In order to create the feature
diagram, it is important to define an initial set of intended products for product line as well as their
intended commonalities and variabilities [38]. The feature diagram has been created according to
the guidelines proposed by Lee et al. [34]. Previous models and documents (e.g. requirements, use
cases specification), and existing artifacts (e.g. users manual, the application itself) can also be
useful to identify features [27]. Figure 3 shows the feature diagram of the Public Health Complaint
SPL. We identified the features based on use case specification (e.g. Healthwatcher use cases [7])
and on the use of the legacy applications (i.e. Healthwatcher, Medwatch [10], and DPH-LA [1]).
Feature variability should be consistent with use case variability. The relationship among features
is further specified in Section 2.2.2.

2.2.1 Product Features

It should be possible to derive three software products from the core assets of the Public Health
Complaint SPL: Healthwatcher [2], Medwatch [10], and DPH-LA [1].

Table 1 describes the feature of each product. The creation of this table was based on use case
specification (Section 3.2). Some features were also extracted by using these software products (i.e.
applications).

2.2.2 Feature Groups

Features can be grouped in order to place a constraint on how the features are used by a certain
product [24]. Establishing these relationships among features also support building a modular
product line architecture (PLA) [33]. According to PLUS method [24, Chapter 5.5], there are
four types of feature groups, namely exactly-one-of, zero-or-one-of, at-least-one-of, zero-or-more-
of. Table 2 describes feature groups and provides additional information about the relationship
among features.

3 Analysis

Figure 4 shows that in this approach Analysis consists of three activities: Use case specification,
Croscutting concerns identification and composition, and Aspect-oriented feature view.

3.1 Nonfunctional requirements

Based on the documentation and use of the applications, we identified the nonfunctional require-
ments (i.e. quality attributes) described below. The descriptions of nonfunctional requirements
were either copied or adapted from Healthwatcher Requirements [7], Aspect-oriented Requirements
Engineering (AORE) models [4], AORE viewpoints [43], and Multi-dimensional Separation of Con-
cerns (MDSOC) [5].

Public Health Complaint Software Product Line 7

Products
Features Healthwatcher Medwatcher Environmentwatcher

Public Health Complaint SPL X X X
Infrastructure Management X X

Register tables X X
Update employee X X

Register new employee X X
Change logged employee X X

Login/Logout X X
Update Health Unit X X

Complaint Management X X X
Update Complaint X X

Complaint Specification X X X
Food Complaint Specification X X X

Animal Complaint Specification X X
Drug Complaint Specification X

Special Complaint Specification X X
Support services for users X X X

Query Information X
RSS feeds X X

Publish RSS feeds X X
Receive alerts via feeds X X

Exception Handling X X X
Security X X X
Captcha X

Encryption X X X
Computer infrastructure X X X

Hardware X X X
2.0 GHz, 1GB RAM, netCard 3Com X X X

Software X X X
Ubuntu 10.4 X X X

Database X X X
MySQL X X
Oracle X

Java Servlets X X X
Java RMI X X X

Distribution X X X
Usability X X X

User interface X X X
Compatibility X X X

Standards X X X
Performance X X X

Response time X X X
Persistence X X X

Concurrency X X X

Table 1: Features of each product

8

Figure 3: Public Health Complaint Software Product Line feature diagram

Public Health Complaint Software Product Line 9

Feature Group Feature Group Features in Feature Feature
Name Category Group Category

Complaint Specification at-least-one-of Animal Complaint optional
Food Complaint mandatory
Drug Complaint optional

Special Complaint optional

Database exactly-one-of MySQL alternative
Oracle alternative

Support services for at-least-one-of Query information alternative
users RSS feeds alternative

Table 2: Feature groups

Figure 4: Analysis activities

3.1.1 Usability [NFR01]

Priority: Important
The system should have an easy to use GUI, as any person who has access to the internet should

be able to use the system [7]. The user interface must be implemented using Servlets [7].

3.1.2 Availability/Exception Handling [NFR02]

Priority: Essential
The system should be available 24 hours a day, 7 days a week. The nature of the system not

being a critical system, the system might stay off until any fault is fixed [7]. Several functionalities
might raise errors while the user interacts with the system and require different handling techniques.
General errors that apply to most cases are due to missing information (e.g. users do not fill in the
required fields in an entry form) and the system signals the error and show which fields need to be
provided. Other error might be related to entering invalid data and the error handling mechanism
should try either to avoid that or to raise the error and suggest the correction [4]. According to Bass
et al. [13, Chapter 4.1], availability is closely related to reliability and one technique to improve
reliability is exception handling.

3.1.3 Performance/Response time [NFR03]

Priority: Essential

10

The system must be capable to handle 20 simultaneous users. The response time must not
exceed 5 seconds [6, 7].

3.1.4 Encryption/Security [NFR04]

Priority: Important

The system should use a security protocol when sending data over the internet. To have access
to the complaint registration features, access must be allowed by the access control sub-system [4, 7].

3.1.5 Standards/Compatibility [NFR05]

Priority: Important

The system must be developed according to the standards established by X2, responsible for
the norms and standardization of systems for the City Hall [6, 7].

3.1.6 Harware and Software/Operational environment [NFR06]

This section lists the hardware and software to be used for the system to operate in a desirable
fashion [7].

Software: Ubuntu 10.04 LTS for the workstation.

Hardware: One computer with: 2.0 GHz processor, 1 GB of RAM memory, net card 3Com
10/100. This equipment shall be used by the attendant as a workstation.

3.1.7 Distribution [NFR07]

Priority: Essential

The system should be capable of running on separate machines. For example, the system core
could be running on one machine and the Servlets on another [7].

3.1.8 (Flexible) Storage medium/Persistence [NFR08]

Priority: Essential

The persistence mechanism should store data about the complaints, employees, health units,
deceases, specialities and citizens that complaint. The system must be capable of extension on the
storage matter, making possible to use, arrays or different databases (MySQL, Oracle, etc.) [4, 7].

3.1.9 Concurrency [NFR09]

Priority: Essential

The system must be capable to handle 20 simultaneous users [4].

2The company name is confidential due to commercial reasons

Public Health Complaint Software Product Line 11

3.2 Use cases specification

The use case specification has three main goals: (i) further detail the requirements based on legacy
documentation (ii) specify use case variability (iii) identify crosscutting and non-crosscutting use
cases. In order to achieve the first goal, we elicited the use cases based on existing documents of
legacy applications. Fantechi et al. proposed an approach to use legacy requirements document
to specify product line variability [20]. Even the use of legacy applications can be useful to un-
derstand them. Use case variability is determined based on features variability, which has already
been specified in the feature diagram. PLUS method [24] represents the use case variability with
stereotypes (kernel, alternative, and optional). Use cases can also represent crosscutting concerns
as proposed Jacobson and Ng [26, Chapter 6.2]. Crosscutting concerns are represented by use case
extensions, which add new behavior to the existing use cases. In this way, both variability and
crosscutting concerns are represented.

3.2.1 Functional Use Cases

Figure 5 shows the use case diagram for the Public Health Complaint SPL. All use cases were
adapted from Healthwatcher - Requirements document [7], but the UC05, UC15, UC16 use cases,
that were included based on the domain analysis (Section 2.2).

Query information [UC01]
Use Case Name: Query information
Description: This use case allows a citizen to perform queries.

Query Health Guide. The citizen might query:

• Which health units take care of a specific specialty.

• What are the specialties of a particular health unit.

Query Speciality Information. The citizen might query:

• Information about a complaint made by a citizen:

– Complaint details.

– Situation (OPENED, SUSPENDED, or CLOSED).

– Technical analysis.

– Analysis date.

– Employee that made the analysis.

• Information about diseases:

– Description.

– Symptoms.

– Duration.

Priority: Important
Category: Optional
Inputs and pre-conditions: The data to be queried must be registered on the system

12

Figure 5: Public Health Complaint SPL use case diagram

Outputs and post-conditions: The query result to the citizen
Main flow of events:

1. The citizen chooses the type of query

(a) In the case of query on specialties grouped by health units, the system retrieves the list
of health units stored.

i. The system retrieves the details of each health unit such as its description and
specialties.

ii. The list of health units is presented to the user on their local display.

Public Health Complaint Software Product Line 13

(b) In the case of a query on health units grouped by specialties, the system retrieves the
list of registered specialties.

i. The system retrieves the details of each specialty such as its unique identifier and
name.

ii. The list of specialties is presented to the user on their local display.

(c) In the case of a query on diseases, the system retrieves the list of diseases.

i. The system retrieves the details of each disease type such as its unique identifier
and name.

ii. The list of disease is presented to the user on their local display.

2. The citizen provides the data for the query

(a) In the case of a query on specialties grouped by health units, the citizen selects the
health unit to be queried.

i. A unique identifier representing the selected health unit is sent to the server.

ii. The system ensures the health unit information is consistent.

iii. The unique identifier is used by the system to search the repository for the selected
health unit.

iv. The details of the selected health unit are retrieved including its specialties.

v. The specialties for the selected health unit are returned to the user.

(b) In the case of a query on health units grouped by specialties, the citizen selects the
specialty to be queried.

i. A unique identifier representing the selected specialty is sent to the server.

ii. The system ensures the health unit information is consistent.

iii. The unique identifier is used to retrieve the list of health units which are associated
with the selected specialty.

iv. The details of the health units and specialties are retrieved.

v. The retrieved health units are returned to the user.

(c) In the case of a query on complaints, the citizen provides the complaint code.

i. The unique identifier representing the complaint to be retrieved is sent to the server.

ii. The system ensures the complaint information is consistent.

iii. The unique identifier is used to retrieve the complaint entry.

iv. The system must determine the complaint type as to retrieve the appropriate infor-
mation.

A. If the complaint is a special complaint the complainer’s age, education level and
occupation are retrieved (in addition to the standard complaint information).

B. If the complaint is a food complaint the meal which was consumed, the number
of people who ate the meal, the number of sick people, etc. are retrieved (in
addition to the standard complaint information).

C. If the complaint is an animal complaint the animal species and the number of
animals affected (in addition to the standard complaint information).

14

v. The complaint with all the appropriate information is returned to the user.

(d) In the case of a query on diseases, the citizen selects the disease to be queried.

i. The unique identifier is used to retrieve the list of health units which are associated
with the selected specialty.

ii. The details of the health units and specialties are retrieved.

iii. The retrieved health units are returned to the user.

(e) In the case of a query on complaints, the citizen provides the complaint code.

i. The unique identifier representing the complaint to be retrieved is sent to the server.

ii. The system ensures the complaint information is consistent.

iii. The unique identifier is used to retrieve the complaint entry.

iv. The system must determine the complaint type as to retrieve the appropriate infor-
mation.

A. If the complaint is a special complaint the complainer’s age, education level and
occupation are retrieved (in addition to the standard complaint information).

B. If the complaint is a food complaint the meal which was consumed, the number
of people who ate the meal, the number of sick people, etc. are retrieved (in
addition to the standard complaint information).

C. If the complaint is an animal complaint the animal species and the number of
animals affected (in addition to the standard complaint information).

v. The complaint with all the appropriate information is returned to the user.

(f) In the case of a query on diseases, the citizen selects the disease to be queried.

i. The unique identifier representing the disease type to be retrieved is sent to the
server.

ii. The system ensures the disease type information is consistent.

iii. The unique identifier is used to retrieve the disease type to query.

iv. The symptoms for the selected disease type are retrieved.

v. The complete disease information is returned to the user.

3. The query results are formatted and presented to the user on their local display.

Specify complaint [UC02]
Use Case Name: Specify complaint
Description: This use case allows a citizen to register complaints. Complaints can be related to
Food, Animal, Drugs, or Special. The four kinds of complaints have the following information in
common: Complaint data: description (mandatory) and observations (optional);
Priority: Essential
Category: Optional
Inputs and pre-conditions: None
Outputs and post-conditions: The complaint saved on the system
Main flow of events:

1. The citizen selects the kind of complaint.

Public Health Complaint Software Product Line 15

2. The system shows the specific screen for each type of complaint.

3. The system registers the kind, date and time of the complaints.

4. The citizen provides the complaint specific data.

5. The system saves the complaint.

(a) The information entered by the user is sent to the server.

(b) The system parses the data entered by the user.

(c) The system creates a new instance of the appropriate complaint type.

(d) The system generates a unique identifier and assigns this to the new complaint.

(e) The complainers address is parsed and saved.

(f) The common complaint information is parsed and stored with the OPENED state.

(g) The specific complaint data is then extracted and stored accordingly.

(h) The system ensures the data is left in a consistent state.

6. The unique identifier is returned and presented to the user on their local display.

Extension Points:
E1. Send data over the internet
The Send data over the internet extension point occurs before step 5

Food complaint specification [UC03]
Use Case Name: Food complaint specification
Description: Food Complaint - DVISA

• Cases where there is a suspicion infected food being eaten.

Priority: Essential
Category: Mandatory
Inputs and pre-conditions: none
Outputs and post-conditions: The food complaint is saved on the system
Main flow of events:

1. The citizen chooses Food as the kind of complaint.

2. The system shows the Food complaint screen.

3. The system registers the kind, date and time of the complaints.

4. The citizen provides the complaint specific data.

5. The system saves the complaint.

(a) The information entered by the user is sent to the server.

(b) The system parses the data entered by the user.

(c) The system creates a new instance of the appropriate complaint type.

16

(d) The system generates a unique identifier and assigns this to the new complaint.

(e) The complainers address is parsed and saved.

(f) The common complaint information is parsed and stored with the OPENED state.

(g) The specific complaint data is then extracted and stored accordingly.

(h) The system ensures the data is left in a consistent state.

6. The unique identifier is returned and presented to the user on their local display.

Animal complaint specification [UC04]
Use Case Name: Animal complaint specification
Description: This use case allows a citizen to register food complaints
Animal Complaint - DVA

• Sick animals.

• Infestations (rodents, scorpions, bats, etc.)

• Diseases related to mosquitoes (dengue, filariose).

• Animal maltreatment

Priority: Essential
Category: Optional
Inputs and pre-conditions: none
Outputs and post-conditions:The animal complaint is saved on the system
Main flow of events:

1. The citizen chooses Animal as the kind of complaint.

2. The system shows the Animal complaint screen.

3. The system registers the kind, date and time of the complaints.

4. The citizen provides the complaint specific data.

5. The system saves the complaint.

(a) The information entered by the user is sent to the server.

(b) The system parses the data entered by the user.

(c) The system creates a new instance of the appropriate complaint type.

(d) The system generates a unique identifier and assigns this to the new complaint.

(e) The complainers address is parsed and saved.

(f) The common complaint information is parsed and stored with the OPENED state.

(g) The specific complaint data is then extracted and stored accordingly.

(h) The system ensures the data is left in a consistent state.

Public Health Complaint Software Product Line 17

6. The unique identifier is returned and presented to the user on their local display.

Drug complaint specification [UC05]
Use Case Name: Drug complaint specification
Description: Required information for a drug complaint:

• Patient information: Patient identifier; patient age; patient weight in kilograms or pounds

• Type of problem (check at least one of the following): Adverse event; Product use error;
Product problem (e.g. defects, malfunction); Problem with different manufacturer of same
medicine

• Outcomes attributed to adverse event (check at least one of the following): Death (specify
the date); Life-threatening; Hospitalization - initial or prolonged; Disability or permanent
damage; Congenital anomaly/Birth defect; Required intervention to prevent permanent im-
pairment/damage (devices); Other serious (important medical events)

• Date of event

• Date of this complaint (automatically filled)

• Describe the event, problem or use error textually (up to a total of 6400 characters allowed.)

• Relevant tests/Laboratory data, including dates (textual description up to a total of 2000
characters allowed.)

• Other Relevant History, Including Preexisting Medical Conditions (e.g. allergies, race, preg-
nancy, smoking and alcohol use, liver/kidney problems,etc.) Textual description up to a total
of 2000 characters allowed.

• Product Available for Evaluation (check one of the following): yes, no, returned to the man-
ufacturer on (specify the date)

• Suspected products information: Product name; Label strength; manufacturer/labeler; dose/amount;
frequency; route; dates of use (If unknown, give duration) from/to (or best estimate); Diagno-
sis or Reason for Use (Indication); Event Abated After Use Stopped or Dose Reduced? (check
one of the following): yes, no, doesn’t apply; lot number; expiration date; Event Reappeared
After Reintroduction? (check one of the following): yes, no, doesn’t apply; NDC number or
Unique ID.

• Suspected medical device: brand name; common device name; manufacturer name, city, and
state; model number; catalog number; serial number; lot number; expiration date; other
number; operator device (check one of the following): health professional, lay user/patient,
other (specify); if implanted, give date; if explanted, give date; is this a single use device
that was reprocessed and reused on a patient? (check one of the following): yes, no; if yes
to previous item, enter name and address of reprocessor (textual description up to a total of
450 characters allowed)

• Product names and therapy dates (exclude treatment of event). Up to a total of 2000 char-
acters allowed

18

• Reporter information: name; address; city; state; zip code; phone number; email; health
professional (check one of the following): yes, no; also reported to (check as many as you
want): manufacturer, user facility, distributor/importer; If you do NOT want your identity
disclosed to the manufacturer, check here (checkbox)

Priority: Essential
Category: Optional
Inputs and pre-conditions: None
Outputs and post-conditions: The drug complaint is saved on the system
Main flow of events:

1. The citizen chooses Drug as the kind of complaint.

2. The system shows the Drug complaint screen.

3. The system registers the kind, date and time of the complaints.

4. The citizen provides the complaint specific data.

5. The system saves the complaint.

(a) The information entered by the user is sent to the server.

(b) The system parses the data entered by the user.

(c) The system creates a new instance of the appropriate complaint type.

(d) The system generates a unique identifier and assigns this to the new complaint.

(e) The complainers address is parsed and saved.

(f) The common complaint information is parsed and stored with the OPENED state.

(g) The specific complaint data is then extracted and stored accordingly.

(h) The system ensures the data is left in a consistent state.

6. The unique identifier is returned and presented to the user on their local display.

Special complaint specification [UC06]
Use Case Name: Special complaint specification
Description: Special Complaint - DVISA

• Cases related to several reasons, which are not mentioned above (restaurants with hygiene
problems, leaking sewerage, suspicious water transporting trucks, etc.)

Priority: Essential
Category: Optional
Inputs and pre-conditions: none
Outputs and post-conditions: The drug complaint is saved on the system
Main flow of events:

1. The citizen chooses Special as the kind of complaint.

Public Health Complaint Software Product Line 19

2. The system shows the Special complaint screen.

3. The system registers the kind, date and time of the complaints.

4. The citizen provides the complaint specific data.

5. The system saves the complaint.

(a) The information entered by the user is sent to the server.

(b) The system parses the data entered by the user.

(c) The system creates a new instance of the appropriate complaint type.

(d) The system generates a unique identifier and assigns this to the new complaint.

(e) The complainers address is parsed and saved.

(f) The common complaint information is parsed and stored with the OPENED state.

(g) The specific complaint data is then extracted and stored accordingly.

(h) The system ensures the data is left in a consistent state.

6. The unique identifier is returned and presented to the user on their local display.

Login [UC07]
Use Case Name: Login
Description: This use case allows an employee to have access to restricted operations on the
Health-Watcher system.
Priority: Essential
Category: Optional
Inputs and pre-conditions: None
Outputs and post-conditions: Password validated by the system
Main flow of events:

1. The employee provides the login and password.

2. The login and password are sent to the server.

3. The system retrieves the employee details using the login as a unique identifier.

4. The system validates the entered password.

5. The result of the login attempt is presented to the employee on their local display.

Extension Points:
E1. Send data over the internet
The Send data over the internet extension point occurs before step 2

Logout [UC08]
Use Case Name: Logout
Description: The employee logouts the system
Priority: Essential

20

Category: Optional
Inputs and pre-conditions: The employee is logged in
Outputs and post-conditions: The employee is not logged in
Main flow of events:

1. The employee clicks on Logout button

2. The system logs out the employee

Register tables [UC09]
Use Case Name: Register tables
Description: This use case allows the registration of system tables. The following operations are
possible: insert, update, delete, search and print. The available tables include:

• Health unit (unit code, unit description).

• Specialty (code and description).

• Health unit / Specialty (health unit and specialty).

• Employee (login, name and password).

• Type of disease (code, name, description, symptom and duration).

• Symptom (code and description).

• Type of disease / Symptom (type of disease and symptom).

Priority: Essential
Category:
Inputs and pre-conditions: Verified employees
Outputs and post-conditions: Updated data on tables
Main flow of events:

1. The employee chooses the option to register (insert/update) in one of the tables.

2. The employee enters the data.

3. The system saves the data.

Extension Points:
E1. Send data over the internet
The Send data over the internet extension point occurs before step 3

Update complaint [UC10]
Use Case Name: Update complaint
Description: This use case allows the state of a complaint to be updated.
Priority: Essential
Category: Mandatory
Inputs and pre-conditions:

Public Health Complaint Software Product Line 21

• The complaint must be registered and have the OPENED state.

• Verified employee

Outputs and post-conditions: Complaint updated and with state CLOSED.
Main flow of events:

1. The employee selects the update complaint option.

2. The system retrieves the list of all registered complaints.

(a) The complaint list is populated with general and complaint type specific data.

3. The list of complaints is returned to the employee.

4. The complaints are formatted and presented to the employee on their local display.

5. The employee selects the complaint they wish to update.

6. The complaint unique identifier is sent to the server.

7. The system ensures the complaint data is consistent.

8. The system retrieves the complaint entry.

9. The complaint is returned to the employee.

10. The complaint is formatted and presented to the employee on their local display.

11. The employee enters the conclusion.

12. The conclusion is sent to the server.

13. The complaint status is set to closed; the date the conclusion was entered is set in addition
to the employee who dealt with the complaint.

14. The system ensures the complaint is left in a consistent state.

15. The complaint information is updated to store the new information.

Extension Points:
E1. Send data over the internet
The Send data over the internet extension point occurs before steps 5 and 12

Register new employee [UC11]
Use Case Name: Register new employee
Description: This use case allows new employees to be registered on the system.
Priority: Essential
Category: Mandatory
Inputs and pre-conditions: Verified employee
Outputs and post-conditions:New employee registered on the system
Main flow of events:

22

1. The employee selects the insert employee option.

2. The employee provides the following information about the new employee: Name, Login ID,
Password (with second password field for confirmation).

3. The employee confirms the operation.

4. The entered data is transmitted to the server.

5. The system verifies the entered data.

6. The system ensures employee data is consistent.

7. The system saves the new employee’s data.

Extension Points:
E1. Send data over the internet
The Send data over the internet extension point occurs before step 4

Update employee [UC12]
Use Case Name: Update employee
Description: This use case allows of the employee’s data to be updated on the system.
Priority: Essential
Category: Mandatory
Inputs and pre-conditions: Verified employee
Outputs and post-conditions: Employee’s data updated on the system
Main flow of events:

1. The employee chooses the update employee option.

2. The employee provides the data to be updated: Name, New password (with second password
field for confirmation), Current password

3. The employee confirms the update.

4. The entered data is sent to the server.

5. The system verifies the entered data.

6. The system ensures the employee data is consistent.

7. The system stores the updated employee information.

Extension Points:
E1. Send data over the internet
The Send data over the internet extension point occurs before step 4

Update health unit [UC13]
Use Case Name: Update health unit
Description: This use case allows the health unit’s data to be updated.
Priority: Essential

Public Health Complaint Software Product Line 23

Category: Mandatory
Inputs and pre-conditions: Verified employee
Outputs and post-conditions: Health unit’s data updated on the system.
Main flow of events:

1. The employee chooses the update health unit option.

2. The system retrieves the list of all health units.

3. The list of health units is returned to the employee.

4. The list of health units is formatted and displayed on the employee’s local display.

5. The employee selects the health unit to be updated.

6. The unique identifier for the selected health unit is sent to the server.

7. The system ensures the health unit data is consistent.

8. The system retrieves the data for the selected health unit.

9. The data retrieved is returned to the employee.

10. The health unit data is formatted and presented on the employee’s local display.

11. The employee alters the necessary data.

12. The updated information is sent to the server.

13. The system ensures the health unit data is left in a consistent state.

14. The system stores the updated health unit information.

Extension Points:
E1. Send data over the internet
The Send data over the internet extension point occurs before steps 6 and 12

Change logged employee [UC14]
Use Case Name: Change logged employee
Description: This use case allows the currently logged employee to be changed.
Priority: Essential
Category: Mandatory
Inputs and pre-conditions: Verified employee
Outputs and post-conditions: First employee signed out and new employee logged-in.
Main flow of events:

1. The employee chooses the change logged employee option.

2. The system shows the login screen, and from this point on, the flow will follow the one de-
scribed in [Login].

24

Receive alerts via feeds [UC15]
Use Case Name: Receive alerts via feeds
Priority: Desirable
Category: Optional
Inputs and pre-conditions: The citizen is using a browser which is capable of subscribing to
feed
Outputs and post-conditions: The citizen receives feeds from Public Health Complaint SPL
Main flow of events:

1. The citizen clicks on the link to subscribe to Public Health Complaint SPL feed

2. The system displays some options for the citizen to choose how to subscribe the feeds

3. The citizen selects one option

4. The system registers the citizen

Publish feeds [UC16]
Use Case Name: Receive alerts via feeds
Priority: Desirable
Category: Optional
Inputs and pre-conditions: Update complaint (UC10)
Outputs and post-conditions: Feeds will be updated

Main flow of events:
This use case is triggered automatically after a complaint is updated by an employee [UC10]. Data
related to the updated complaint is used to create a feed entry that will be published.

3.2.2 Nonfunctional Use Cases

Some nonfunctional requirements can be refined as nonfunctional use cases (also known as infras-
tructure use cases), such as persistence and encryption, which are described in this section. There
are also other kinds of nonfunctional requirements that represent system wide qualities and are de-
scribed simply as declarative statements during requirements [26, Chapter 7.3]. Although exception
handling is a nonfunctional requirement and it would be possible to specify it as a nonfunctional
use case, we follow the approach proposed by Rubira et al. [42] and specify the exceptional behavior
as use case extensions (Section 3.2.3).

Persist Data [NUC01]
Use Case Name: Persist data
Priority: Essential
Category: Kernel
Actor: system
Inputs and pre-conditions: none
Outputs and post-conditions: data is stored on database
Extension flow of events: none

Public Health Complaint Software Product Line 25

1. The system stores the data entered by the user on the database

Encrypt Data [NUC02]
Use Case Name: Encrypt data
Description: The system should use a security protocol when sending data over the internet. To
have access to the complaint registration features, access must be allowed by the access control
sub-system [7].
Priority: Important
Category: Mandatory
Actor: system
Inputs and pre-conditions: none
Outputs and post-conditions: data is stored on database
Extension flow of events:
This extension flow occurs at the extension points Send data over the internet in the Query infor-
mation, Login, Receive alerts via feeds, Find information on the website, and Specify complaint use
cases.

1. The system uses a security protocol to send data over the internet

Provide remote access [NUC03]
Use Case Name: Provide remote access
Priority: Essential
Category: Kernel
Actor: system
Inputs and pre-conditions: none
Outputs and post-conditions: data can be send over the Internet
Extension flow of events: This extension flow occurs at the extension points Send data over the
internet in the Query information, Receive alerts via feeds, Find information on the website, and
Specify complaint use cases.

1. The system send data over the Internet.

3.2.3 Exception Handling Flow in Use Cases

Query Information Use Case Name: Query Information
Exceptions:

1. Exception #1:

• Description of Exception Behavior: Problems on Internet Connection

• Number of the Event that Identify the Exception: 1 and 2

• Activity of Exception Handling: Warn the user about the problem with a message

• Group of valid post-conditions after the Exception: The query won’t be executed
and the system won’t be changed

2. Exception #2:

26

• Description of Exception Behavior: A problem occurs retrieving data

• Number of the Event that Identify the Exception: 1.x.i, 2.x.iv

• Activity of Exception Handling: Warn the user about the problem with a message
and the system retrieve the available information

• Group of valid post-conditions after the Exception: The query won’t be executed
and the system won’t be changed

3. Exception #3:

• Description of Exception Behavior: An invalid complaint code is entered

• Number of the Event that Identify the Exception: 2.c.iii

• Activity of Exception Handling: Warn the user with a message that the number of
this complaint is invalid

• Group of valid post-conditions after the Exception: The screen is showing the
principal screen of Query Information

4. Exception #4:

• Description of Exception Behavior: Consistent data cannot be assured

• Number of the Event that Identify the Exception: 2.x.ii

• Activity of Exception Handling: Warn the user with a message, the system abandon
the retrieval

• Group of valid post-conditions after the Exception: The screen is showing the
principal screen of Query Information

Complaint Specification, Food Complaint, Animal Complaint, Special Complaint
Use Case Name: Complaint Specification
Exceptions:

1. Exception #1:

• Description of Exception Behavior: Problems on Internet Connection

• Number of the Event that Identify the Exception: 5.a

• Activity of Exception Handling: Warn the user about the problem with a message

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of complaint specification

2. Exception #2:

• Description of Exception Behavior: Invalid data is entered by the user

• Number of the Event that Identify the Exception: 5.b

• Activity of Exception Handling: Warn the user about the problem with a message

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of complaint specification

Public Health Complaint Software Product Line 27

3. Exception #3:

• Description of Exception Behavior: A problem occurs storing the complaint

• Number of the Event that Identify the Exception: 5.e-5.g

• Activity of Exception Handling: Warn the user about the problem with a message,
and roll-back the complaint entry

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of complaint specification

4. Exception #4:

• Description of Exception Behavior: Data Consistency cannot be ensured

• Number of the Event that Identify the Exception: 5.h

• Activity of Exception Handling: Warn the user about the problem with a message,
and roll-back the complaint entry

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of complaint specification

Login Use Case Name: Login
Exceptions:

1. Exception #1:

• Description of Exception Behavior: Problems on Internet Connection

• Number of the Event that Identify the Exception: 2

• Activity of Exception Handling: Warn the user about the problem with a message

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Login

2. Exception #2:

• Description of Exception Behavior: Problem when the system was retrieving the
employee details

• Number of the Event that Identify the Exception: 3

• Activity of Exception Handling: Warn the user about the problem with a message

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Login

3. Exception #3:

• Description of Exception Behavior: The system cannot validate the employee
(adapted from Healthwatcher - Use cases specification [7])

• Number of the Event that Identify the Exception: 3

• Activity of Exception Handling: Warn the user about the problem with a message

28

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Login

Register Tables Use Case Name: Register Tables
Exceptions:

1. Exception #1:

• Description of Exception Behavior: Problems on Internet Connection

• Number of the Event that Identify the Exception: 5.a

• Activity of Exception Handling: Warn the user about the problem with a message

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of complaint specification

2. Exception #2:

• Description of Exception Behavior: Invalid data is entered by the user

• Number of the Event that Identify the Exception: 5.b

• Activity of Exception Handling: Warn the user about the problem with a message

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of complaint specification

Update Complaint Use Case Name: Update Complaint
Exceptions:

1. Exception #1:

• Description of Exception Behavior: Error during the retrieve of registered com-
plaints

• Number of the Event that Identify the Exception: 2, 8

• Activity of Exception Handling: Warn the user about the problem with a message

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of update complaint

2. Exception #2:

• Description of Exception Behavior: Data consistency cannot be ensured

• Number of the Event that Identify the Exception: 7, 14

• Activity of Exception Handling: Warn the user about the problem with a message,
and roll-back the complaint entry

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of complaint specification

3. Exception #3:

• Description of Exception Behavior: Problems on Internet Connection

Public Health Complaint Software Product Line 29

• Number of the Event that Identify the Exception: 3, 6, 9, 12

• Activity of Exception Handling: Warn the user about the problem with a message

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of update complaint

4. Exception #4:

• Description of Exception Behavior: Error during the update of complaint

• Number of the Event that Identify the Exception: 15

• Activity of Exception Handling: Warn the user about the problem with a message,
and roll-back the complaint entry

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of update complaint

Register New Employee Use Case Name: Register New Employee
Exceptions:

1. Exception #1

• Description of Exception Behavior: Incomplete Data Entry (adapted from Health-
watcher - Use cases specification [7])

• Number of the Event that Identify the Exception: 2

• Activity of Exception Handling: Warn the user that he/she has missing/incorrect
data

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Register New Employee

2. Exception #2

• Description of Exception Behavior: Problems on Internet Connection

• Number of the Event that Identify the Exception: 4

• Activity of Exception Handling: Warn the user about the problem with a message

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Register New Employee

3. Exception #3

• Description of Exception Behavior: The Employee is already entry

• Number of the Event that Identify the Exception: 5

• Activity of Exception Handling: Warn the user that already has this employee
subscribed on the system and abandon the entry

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Register New Employee

4. Exception #4

30

• Description of Exception Behavior: Data consistency cannot be ensured

• Number of the Event that Identify the Exception: 6

• Activity of Exception Handling: Warn the user about the problem with a message,
and roll-back the complaint entry

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Register New Employee

5. Exception #5

• Description of Exception Behavior: Error when the system was storing the new
employee’s details

• Number of the Event that Identify the Exception: 6

• Activity of Exception Handling: Warn the user about the problem with a message,
and roll-back the complaint entry

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Register New Employee

Update Employee Use Case Name: Update Employee
Exceptions:

1. Exception #1

• Description of Exception Behavior: Password is missing or invalid (adapted from
Healthwatcher - Use cases specification [7])

• Number of the Event that Identify the Exception: 2

• Activity of Exception Handling: Warn the user that he/she has missing/invalid
password

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Update Employee

Update Health Unit Use Case Name: Update Health Unit
Exceptions:

1. Exception #1

• Description of Exception Behavior: Problem when the system was retrieving the
information of the health unit

• Number of the Event that Identify the Exception: 2, 8

• Activity of Exception Handling: Warn the user that he/she has missing/incorrect
data

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Update Health Unit

2. Exception #2

• Description of Exception Behavior: Problems on Internet Connection

Public Health Complaint Software Product Line 31

• Number of the Event that Identify the Exception: 3, 6, 9, 12

• Activity of Exception Handling: Warn the user about the problem with a message

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Update Health Unit

3. Exception #3

• Description of Exception Behavior: Data consistency cannot be ensured

• Number of the Event that Identify the Exception: 7, 13

• Activity of Exception Handling: Warn the user about the problem with a message,
and roll-back the complaint entry

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Update Health Unit

4. Exception #4

• Description of Exception Behavior: Error when the system was storing the update
of the health unit

• Number of the Event that Identify the Exception: 14

• Activity of Exception Handling: Warn the user about the problem with a message,
and roll-back the complaint entry

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Update Health Unit

Change Logged Employee Use Case Name: Change Logged Employee

1. Exception #1

• Description of Exception Behavior: On step 2, in case the password or the em-
ployee is not valid, an error message should be shown (adapted from Healthwatcher -
Requirements [7]).

• Number of the Event that Identify the Exception: 2

• Activity of Exception Handling: Warn the user about the problem with a message

• Group of valid post-conditions after the Exception: The screen is back to the
main screen of Login

Drug Complaint Specification Use Case Name: Drug Complaint Specification
Exceptions:

1. Exception #1:

• Description of Exception Behavior: Problems on Internet Connection

• Number of the Event that Identify the Exception: 2, 5

• Activity of Exception Handling: Warn the user about the problem

32

• Group of valid post-conditions after the Exception: The data could not be saved

2. Exception #2:

• Description of Exception Behavior: Database is not Accessable

• Number of the Event that Identify the Exception: 2, 5

• Activity of Exception Handling: Warn the user about the problem and ask him/her
to access the system in a few minutes

• Group of valid post-conditions after the Exception: The data could not be saved

Find Information on Website Use Case Name: Find Information on Website
Exceptions:

1. Exception #1:

• Description of Exception Behavior: Problems on Internet Connection

• Number of the Event that Identify the Exception: 2

• Activity of Exception Handling: Warn the user about the problem

• Group of valid post-conditions after the Exception: The data can’t be showed

2. Exception #2:

• Description of Exception Behavior: Database is not Accessable

• Number of the Event that Identify the Exception: 2

• Activity of Exception Handling: Warn the user about the problem and ask him/her
to access the system in a few minutes

• Group of valid post-conditions after the Exception: The data can’t be showed

Receive Alerts via Feeds Use Case Name: Receive Alerts via Feeds
Exceptions:

1. Exception #1:

• Description of Exception Behavior: Problems on Internet Connection

• Number of the Event that Identify the Exception: 2, 4

• Activity of Exception Handling: Warn the user about the problem

• Group of valid post-conditions after the Exception: The subscribe can’t be com-
mited

2. Exception #2:

• Description of Exception Behavior: Database is not Accessable

• Number of the Event that Identify the Exception: 4

• Activity of Exception Handling: Warn the user about the problem and ask him/her
to access the system in a few minutes

• Group of valid post-conditions after the Exception: The subscribe can’t be com-
mited

Public Health Complaint Software Product Line 33

3.2.4 Crosscutting Use Cases

Moreira et al. [36] proposed an approach to identify crosscutting concerns among the quality at-
tributes that affect functional use cases. Araújo and Moreira [11] augmented the identification of
crosscutting concerns by using use cases specification to represent functional and nonfunctional
requirements. Based on the work of Araújo and Moreira [11], Eler [19, Chapter 4.4.10] proposed
guidelines to identify crosscutting use cases based on the use case diagram, which does not nec-
essarily mean that these crosscutting use cases will be implemented by aspects. The criteria to
identify crosscutting use cases are the number of relationships with other use cases. The criteria
are listed below.

• Use cases included by two or more use cases;

• Use cases that extend two or more use cases;

• Use cases that constrain two or more use cases. The constrain relationship between use cases
was proposed proposed by Araújo and Moreira [11].

Thus, based on the use case diagram (Figure 5), two crosscutting use cases have been identified.
Table 3 presents crosscutting use cases and the criteria applied to identify them.

Use cases Criteria

Encrypt data It extends two or more use cases

Persist data It is included by two or more use cases

Handle exception It extends two or more use cases

Provide remote access It extends two or more use cases

Table 3: Crosscutting use cases

3.2.5 Relationship between nonfunctional requirements and use cases

Moreira et al. [36] proposed to establish a relationship between use cases and nonfunctional re-
quirements in order to support the identification of crosscutting concerns.

Table 4 supports the understanding of Table 5.

3.2.6 Mapping Features to Use Cases

There is a symbiotic relationship between features and use cases. Feature models focus on specifying
the features variability by means of a graphical user-friendly and hierarchical structure. On the
other hand, use cases specify the interaction between user and system, and also the system behavior.
Thus, feature models support defining the variability of each use case and feature dependencies can
be depicted in terms of the dependencies between the use cases [24, Chapter 5.3.2].

34

Identifier Use case name Identifier Use case name

UC01 Query information UC02 Specify complaint

UC03 Food complaint specification UC04 Animal complaint specification

UC05 Drug complaint specification UC06 Special complaint specification

UC07 Login UC08 Logout

UC09 Register tables UC10 Update complaint

UC11 Register new employee UC12 Update employee

UC13 Update Health Unit UC14 Change logged employee

UC15 Receive alerts via feeds

Identifier Nonfunctional requirement Identifier Nonfunctional requirement

NFR01 Usability NFR02 Availability/EH

NFR03 Response time/Performance NFR04 Security/Encryption

NFR05 Standard/Compatibility NFR06 Hardware and Software/Operational Environment

NFR07 Distribution NFR08 Storage medium/Persistence

NFR09 Concurrency

Table 4: Use case and nonfunctional requirements identifiers

Use N
F

R
0
1

N
F

R
0
2

N
F

R
0
3

N
F

R
0
4

N
F

R
0
5

N
F

R
0
6

N
F

R
0
7

N
F

R
0
8

N
F

R
0
9

Cases

UC01 X X X X X X X
UC02 X X X X X X X X
UC03 X X X X X X X X
UC04 X X X X X X X X
UC05 X X X X X X X X
UC06 X X X X X X
UC07 X X X X
UC08 X X X X
UC09 X X X X X X
UC10 X X X
UC11 X X X
UC12 X X X
UC13 X X X
UC14 X X
UC15 X X X

Table 5: Use cases influenced by nonfunctional requirements

Feature Feature Use case Use case Variation
Name Category Name category/ point

variation name
point

Public Health Complaint SPL kernel Specify complaint kernel

Persistence kernel Persist data kernel

Database kernel Persist data kernel

MySQL kernel Persist data kernel

Oracle kernel Persist data kernel

Computer infrastructure kernel Specify complaint kernel

Hardware kernel Specify complaint kernel

2.0GHz, 1GB RAM, netCard 3Com kernel Specify complaint kernel

Software kernel Specify complaint kernel

Ubuntu kernel Specify complaint kernel

Java Servlets kernel Provide remote access kernel

Java RMI kernel Provide remote access kernel

Distribution kernel Provide remote access kernel

Usability kernel Specify complaint kernel

User interface kernel Specify complaint kernel

Compatibility kernel Specify complaint kernel

Standards kernel Specify complaint kernel

Performance kernel Specify complaint kernel

Response time kernel Specify complaint kernel

Security kernel Specify complaint kernel

Captcha optional Specify complaint alternative

Login/logout alternative Login/logout alternative

Encryption kernel Encrypt data alternative

Exception Handling kernel Specify complaint kernel

Complaint management kernel Specify complaint kernel

Update complaint kernel Update complaint kernel

Complaint specification kernel Specify complaint kernel

Food Complaint specification kernel Specify food complaint kernel

Infrastructure Management kernel Specify complaint kernel

Animal Complaint specification optional Animal Complaint specification optional

Register tables kernel Register tables kernel

Drug Complaint specification optional Drug Complaint specification optional

Update Employee kernel Update Employee kernel

Special Complaint specification optional Special Complaint specification optional

Query information optional Query information optional

Receive alerts via RSS optional Receive alerts via RSS optional

Register new employee kernel Register new employee kernel

Change logged employee kernel Change logged employee kernel

Update health unit kernel Update health unit optional

Concurrency kernel Specify complaint kernel

Public Health Complaint Software Product Line 35

3.3 Identifying and composing crosscutting concerns

Identifying and managing early as apects helps to improve modularity in the requirements and
architecture design and to detect conflicting concerns early, when trade-offs can be resolved more
economically [12].

Some scattered concerns might be too trivial or heterogeneous to capture separately. For in-
stance, if a different type of auditing is required for every transaction, it’s unhelpful to decouple
auditing’s description from its transaction description. However, if some core concepts related to au-
diting crosscut the other concerns, those should be collected and their points of impact recorded [12].

We identified crosscutting concerns based on crosscutting use cases (Section 3.2.4), since use
cases can represent crosscutting concerns, and on legacy requirements documents [4–7, 43], which
have already identified some crosscutting concerns. These legacy documents were revisited in order
to keep the consistency with current requirements. Thus, the identified crosscutting concerns are
concurrency, distribution, exceptional handling, persistence, encryption, standards, performance,
and usability. Note that we use the same name of the features (see Figure 3) in order to list the
crosscutting concerns, because a concern is a kind of feature [15, 41].

According to Moreira et al. [37] it is important to identify coarse-grained relationships among
crosscutting concerns. It facilitates negotiation and decision-making among stakeholders. Table 6
shows how each croscutting concern affects other crosscutting concerns. The creation of Table 6
was based on use cases specification (Section 3.2) and legacy requirements documents [4–7, 43].

Concerns C
on

cu
rr

en
cy

D
is

tr
ib

ut
io

n

E
xc

.H
an

dl
in

g

P
er

fo
rm

an
ce

P
er

si
st

en
ce

E
nc

ry
pt

io
n

St
an

da
rd

s

U
sa

bi
lit

y

Concurrency x X X X X
Distribution x X X
Exception x X
handling

Performance x X X
Persistence X X x

Encryption X X x

Standards X x X
Usability x

Table 6: This table shows the influence of one concern on the others

Note that Security feature (see Figure 3) is composed by Encryption and Captcha features.
Although some legacy requirements documents define Security as a crosscutting concern (e.g. MD-
SOC [5] and Viewpoints [43]), we believe that only Encryption cuts across the system while Captcha
does not.

3.4 Aspect-oriented Feature Analysis

Since we are using an aspect-oriented approach to perform a feature-oriented reengineering pro-
cess [28], we use Aspect-oriented Feature View (AOFV) to specify crosscutting features affects other
crosscutting and regular (i.e. non-crosscutting) features [47]. Crosscutting features are features that

36

cut across other features. The AOFV promotes the traceability of both crosscutting concerns and
variability from feature model to aspect-oriented PLA model, thus supporting its design and en-
hancing system’s evolvability. The AOFV enables modeling crosscutting concerns as crosscutting
features thereby representing their variability. This view is derived from the feature model and its
role is not to replace the feature model, but to complement it. Note that the notation is a little
bit different from the feature model, since it is not hierarchical. Thus, feature variability must be
represented in isolation. For instance, Encryption is an alternative feature (see Figure 3), but as
the others features of the same group are not represented in the AOFV because they are neither
crosscutting features nor crosscut by a feature, the variability of Encryption feature is represented
by a crossed-circle.

Figure 6: Aspect-oriented feature view

4 Design

Figure 7 shows activities necessary to build the PLA based on analysis documents. In order to
create the PLA, the feature diagram endures four transformations, which are based on the Feature-
Architecture Mapping (FArM) method [44]. FArM considers only the feature diagram to create
the PLA. We extended FArM in order to consider the crosscutting concerns which are represented
in the AOFV. Thus, transformations applied to the feature diagram are also applied to the AOFV.

4.1 From feature model to architecture model

Deriving the PLA from use cases induces feature scattering and tangling [44]. The Feature-
Architecture Mapping (FArM) method [44] supports the design of PLA based on feature diagram.
FArM defines 4 transformations to build the architecture based on feature diagram:

1. Tranformation 1. Removing non-architecture related features and Resolving quality fea-
tures (Section 4.1.1)

2. Tranformation 2. Transforming based on architectural requirements (Section 4.1.2)

3. Tranformation 3. Transforming based on interacts relations (Section 4.1.3)

4. Tranformation 4. Transform based on hierarchy relations (Section 4.1.4)

Public Health Complaint Software Product Line 37

Figure 7: Design activities

4.1.1 Removing non-architecture related features and Resolving quality features

According to van der Linden et al. [35, Chapter 3.1.2], one important issue related to architectures
is architectural significant requirements, which encompass two types of requirements: functional
requirements and quality requirements. Functional requirements determine what is realised and
quality requirements determine how it is realised [35, Chapter 3.1.2]. Non-architecture related
(NAR) features are the opposite of architectural significant requirements.

In the Public Health Complaint SPL, all subfeatures of Computer infrastructure (except Java
RMI, Java Servlets, and Database) and subfeatures of Compatibility are NAR features.

FArM method resolves quality features (i.e. a feature that represents a quality attribute)
through the integration with existing functional features. In the Public Health Complaint SPL, the
following quality features are integrated with existing functional features: Persistence, Usability,
Distribution, Concurrency, Availability, Encryption, and Performance. Persistence is composed by
Database, which can be implemented by either MySQL or Oracle. Usability is composed by User
interface, which is implemented by Java Servlets. For instance, Distribution can be implemented
by both Java RMI and Java Servlets features. Java RMI can also implement Encryption feature,
a subfeature of Security. Concurrency is implemented by Java Synchronization mechanisms [8].
Availability is supported by the implementation of Exception Handling.

Performance feature and its subfeature depends on architecture styles [13, Chapter 4.1]. How-
ever, we believe that, for Public Health Complaint SPL, the performance requirement (see NFR03)
should not be a driving requirement for defining the product line architecture (PLA). Healthwatcher

38

legacy architecture (Section 2.1) is a layered architecture, which is not performance-friendly archi-
tecture style. Furthermore, Healthwatcher implementation [2] does not support any mechanism to
improve performance, like the implementation of cache. Figure 13 in Appendix A shows the result
of transformation 1, which includes removing NAR features (Section 4.1.1) and resolving quality
attributes.

4.1.2 Transforming based on architectural requirements

There may exist architectural requirements that must be satisfied through direct resolution, that
is, integrating with existing functional features. As architectural requirements have already been
specified as features, no feature has been added.

4.1.3 Transforming based on interacts relations

After transformations described in steps 1 to 3, current feature model contains exclusively functional
features. The communication among these features is represented by introducing new features
relation, namely the interacts relation [44]. FArM defines the following interacts relation:

• Type 1. It connects two features where one features uses the other feature’s functionality.

• Type 2. It connects two features where the correct operation of one feature alters the
behavior of the other feature.

• Type 3. It connects two features where the correct operation of one feature contradicts with
the correct operation of the other feature.

Before adding interacts relations among features, it is important to check if the relation already
exists in the AOFV. If any type of interacts relation has a correspondent in AOFV, it must not
be added to the feature model. For instance, Complaint Management and its subfeatures uses
Database feature in order to persist data. According to FArM, an uses relation would be added
between Complaint Management and Database. However, in AOFV it is already represented that
Database (which is the implementation of Persistence crosscutting feature) crosscuts Complaint
Management. Although the semantic of uses and crosscuts relations are different Thus, it is not
necessary to add the uses relation because it is already represented in the AOFV.

Note that crosscuts relations (type 4) modifies features, which is similar to alters relation (type
2) defined in FArM method [44]. Whereas the crosscuts is a relation between one crosscutting
feature and other features (1-n relation), alters is a relation between two features (1-1 relation).

After the identification of relations between features, they are transformed based on two criteria:

• Criterion 1. The type of interacts relations.

• Criterion 2. The number of interacts relations.

4.1.4 Transform based on hierarchy relations

In this step, features are grouped to become components. The module hierarchy largely corresponds
to the feature hierarchy [29]

Public Health Complaint Software Product Line 39

1. If a feature does not have any sibling and it is not the root feature, merge the feature with
its parent recursively;

2. All parent-features should become components (except the root feature) and their subfeatures
should become either subcomponents or classes depending on how complex it is to implement
them. Note that this step can be recursively applied.

3. All the relationships between subfeatures must be represented as relationships between com-
ponents. If a subfeature has become a subcomponent their respective superfeatures of the
same level3.

Figure 8: Transformation 4: Grouped features and their relationships

4.1.5 Aspect-oriented feature transformations

The AOFV extends the feature model in order to support reasoning about crosscutting features.
Thus, the transformations describe in Section 4.1 must also be applied to the AOFV. For instance,
the first transformation of FArM (Section 4.1.1), NAR features are removed from the feature model
causing the same effect on AOFV.

4.2 Initial architecture design

After transforming the feature diagram according to FArM (Section 4.1) and propagating these
transformations to the AOFV (Section 4.1.5), we merged both diagrams in order to define all
relations among features.

4.3 Interface identification and architecture refinement

Since we intend to Public Health Complaint SPL based on components, it is known that com-
ponents communicate through their interfaces. In this context, interfaces are usually classified in

3The level of a feature is given by the shortest distance between the feature and the root feature.

40

Figure 9: Aspect-oriented feature view after FArM transformations

Figure 10: Concept model

provided and required interfaces [45]. However, aspects provide another mechanism to establish the
communication among components, because an aspect can capture a method call to an interface,
for instance. Some works in the literature propose a new aspect-oriented interface, which Gris-
wold et al. called crosscutting programing interface (XPI) [25], which allows the communication
among components. Thus, there are two types of interfaces: regular interfaces which are designed
and implemented by object-oriented techniques and XPIs which are designed and implemented by
aspect-oriented techniques.

The crosscuts relations have at one end an XPI which exposes the joinpoints of the component
and at other end an Abstract aspect which has the advices. Abstract aspects are connected to

Public Health Complaint Software Product Line 41

XPIs through aspect-connectors.

• crosscuts relations between components must be mediated by using aspect-orientation, that
is, the crosscut component must have an XPI and the component which cuts across other
components must have an Abstract aspect.

• uses, alters, and contradicts with relations must be mediated by using object-orientation, that
is, regular provided and required interfaces.

Figure 11: Initial product line architecture specification

Architecture refinement is performed by refining the identified interfaces using UML commu-
nication diagrams. Eler and Masiero proposed an approach to refine component interfaces using
communication diagrams [18]. We extended their approach to use XPIs to realize use case ex-
tensions (see Section 3). The use of XPIs and abstract aspects minimizes the coupling between
components [17]. One input for this activity is the Use case specification, which allows to reason
about the behavior of the architectural components and it specifies what information each interface
needs.

42

5 Provisioning

As shown in Figure 12, in this approach Provisioning consists of the following activities: Evaluation
of legacy components, Component implementation and refactoring, and Connector specification and
implementation. The objective of evaluating legacy components is to increase reuse and reduce
costs and time-to-market. The quality of legacy components must be evaluated. Metrics such as
coupling, cohesion, complexity, and dependency can be collected by tools [32] and are useful to
evaluate the quality of a component.

Figure 12: Provisioning activities

5.1 Evaluation of legacy components

The objective of evaluating legacy components is to increase reuse and reduce costs and time-to-
market. The quality of legacy components must be evaluated. Metrics such as coupling, cohesion,
complexity, and dependency can be collected by tools [32] and are useful to evaluate the quality of
a component.

5.2 Component implementation and refactoring

The Component Implementation and Refactoring activity is responsible for implementing new fea-
tures and refactoring components that implement reused features. Some components might be
reused without any modifications. Others might be wrapped using a different component model in
order to make them compliant to the current PLA.

We managed to reuse components that implement the Healthwatcher features, but we also had
to implement features that do not belong to Healthwatcher, such as RSS Feeds and Captcha. Reused
components were refactored to adapt to current PLA. Refactoring is a technique for changing the
internal structure of existing programs to make them easier to understand and cheaper to modify,
wihtout changing their observable behavior [22]. During refactoring, we avoided changing legacy
code. Instead, we wrapped legacy code using COSMOS*-VP component model [17].

Public Health Complaint Software Product Line 43

5.3 Connectors specification and implementation

Finally, Connectors specification and implementation activity has a main role for variability spec-
ification and implementation, because connectors are used to materialize variability. Moving the
implementation of variability decisions from components to connectors supports PLA evolution [48].
The COSMOS*-VP component implementation model [17] provides guidelines to implement com-
ponents that handle both regular and aspectual communication and it also supports the design and
implementation of such connectors to encapsulate variability decisions.

6 Data collection and analysis

Metrics have been collected based on legacy Healthwatcher (Legacy-HW) application and Health-
watcher product which was derived from Public Health Complaint SPL (PHC-HW).

We have collected 9 metrics, which can be divided in two groups: (i) size metrics, namely,
number of modules, number of components, number of connectors, number of features, total number
of Lines of Code (LOC), average LOC/module; and (ii) evolution metrics, namely, feature tangling,
feature scattering, and average efferent coupling between modules (coupling for short). A module
can be either a component or a connector.

Metrics of number of modules, number of components, and number of connectors have been
manually collected based on architectures. Legacy-HW is presented in Section 2.1 while PHC-HW
is an instantiation of Public Health Complaint PLA presented in Section 4.3. The number of
features was collected by counting them in Table 1. We collected the total number of LOC using
shell scripts (see Appendix B). Blank lines and comments were also counted.

Separation of concerns is one measurable attribute of evolution [14]. In order to measure
separation of concerns, we have used metrics presented by Riebisch and Brcina [40]. Equation 1
shows how to measure the number of modules (a ∈ A) that implements a particular feature f ∈
F . Note that the equation considers the ideal case where no scattering of features exists by the
subtraction of 1.

sca(f) := |a : f a| − 1 (1)

Equation shows how it is measured the scattering of one feature, while Equation 2 shows how it
is measured the scattering of all features. The scattering of variation points and tangling of features
are measured similarly. The higher is the scattering, the worse is the support for PLA evolution.

fsca(F) :=

∑
f∈F sca{f}
|F | · |A|

, fsca ∈ [0, 1) (2)

The complete matrix that shows the mapping between features and modules is available on
Public Health Complaint website [9].

Efferent coupling refers to the degree of interdependence between parts of a design [?], which
means that a high interdependence can harm maintainability. In this study, we have measured
the efferent coupling between modules, that is, the number of modules each module knows. The
collection of coupling metrics was supported by shell scripts (see Appendix []).

44

Acknowlegedments

Leonardo P. Tizzei is supported by CAPES - Brazil. Cećılia M.F. Rubira is partially supported by
Fapesp - Brazil and CNPQ - Brazil. We also thank the Healthwatcher developers: Phil Greenwood,
Thiago Bartolomei, Eduardo Magno, Uirá Kulesza, Sérgio Soares, Nelio Cacho, and Marcos Dósea.

A From feature diagram and aspect-oriented feature view to prod-
uct line architecture

B Scripts

To count the number of LOC, the script described in Figure 17 was executed. It counts the number
of LOC, including blank lines and comments, of all files whose extensions are either .java (Java
files) or .aj (AspectJ files). However, the result has a minor error, because the execution of this
script adds 3 lines to each file it reads. Thus, the second script, described in Figure 18, counts the
number of files read in order to collect the correct value.

Figure 19 shows the script we created to support the collection of coupling metric. The script
below was executed to collect data from PHC-HW, but the script to collect data from Legacy-HW
was slightly different. The script reads all .java and .aj files and selects only references to other
packages. As in COSMOS*-VP each module has a corresponding package, then it is possible to
know the relations between modules analyzing the import of all classes and aspects of each module.
The result is stored in a file, one for each module. This file is analyzed to find out the coupling
between modules.

References

[1] Department of Public Health of Los Angeles county. Available from: URL:
http://publichealth.lacounty.gov/phcommon/complaints/phcomp.cfm.

[2] HealthWatcher - A testbed for Aspect Oriented Software Development. Available from: URL:
http://www.comp.lancs.ac.uk/˜greenwop/tao/.

[3] HealthWatcher - architecture - aosd-europe notation - version 2. Available from: URL:
http://www.comp.lancs.ac.uk/˜greenwop/tao/architecture.htm.

[4] HealthWatcher - Aspect-oriented Requirements Engineering Model - version 2. Available from:
URL: http://www.comp.lancs.ac.uk/˜greenwop/tao/requirements.htm.

[5] HealthWatcher - MDSoC - Multi-Dimensional Separation of Concerns - version 2. Available
from: URL: http://www.comp.lancs.ac.uk/˜greenwop/tao/requirements.htm.

[6] HealthWatcher - requirements alignment document. Available from: URL:
http://www.comp.lancs.ac.uk/˜greenwop/tao/requirements.htm.

[7] HealthWatcher - Requirements Document - version 2. Available from: URL:
http://www.comp.lancs.ac.uk/˜greenwop/tao/requirements.htm.

Public Health Complaint Software Product Line 45

[8] Java SE Development Kit. Available from: URL: http://download.oracle.com/javase/6/docs/.

[9] Public Health Complaint website. Available from: URL:
http://www.ic.unicamp.br/˜tizzei/phc/sac2012/.

[10] United States Food and Drug Administration (FDA) - Medwatch. Available from: URL:
https://www.accessdata.fda.gov/scripts/medwatch/medwatch-online.htm.

[11] Jo ao Araújo and Ana Moreira. An aspectual use case driven approach. In VIII Jornadas de
Ingenieŕıa de Software y Bases de Datos, Alicante, Spain, November 2003. Thompson (Spain).

[12] Elisa Baniassad, Paul C. Clements, João Araújo, Ana Moreira, Awais Rashid, and Bedir
Tekinerdogan. Discovering early aspects. IEEE Softw., 23:61–70, January 2006.

[13] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[14] Robert Brcina, Stephan Bode, and Matthias Riebisch. Optimisation process for maintaining
evolvability during software evolution. In ECBS ’09: Proceedings of the 2009 16th Annual IEEE
International Conference and Workshop on the Engineering of Computer Based Systems, pages
196–205, Washington, DC, USA, 2009. IEEE Computer Society.

[15] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Motorola weavr: Aspect orientation
and model-driven engineering. Journal of Object Technology, 6(7):51–88, 2007.

[16] M.V. Couto, M.T. Valente, and E. Figueiredo. Extracting software product lines: A case
study using conditional compilation. In 15th European Conference on Software Maintenance
and Reengineering (CSMR), pages 191 –200, 2011.

[17] Marcelo Dias, Leonardo Tizzei, Cećılia M. F. Rubira, Alessandro Garcia, and Jaejoon Lee.
Leveraging aspect-connectors to improve stability of product line variabilities. In 4th Intl.
Workshop on Variability Modelling of Software-intensive Systems, pages 21–28, 2010.

[18] Marcelo Eler and Paulo Masiero. Aspects as components. In Maurizio Morisio, editor, Reuse of
Off-the-Shelf Components, volume 4039 of Lecture Notes in Computer Science, pages 411–414.
Springer Berlin / Heidelberg, 2006.

[19] Marcelo Medeiros Eler. Um método para o desenvolvimento de software baseado em com-
ponentes e aspectos. Master’s thesis, Instituto de Ciências Matemáticas e de Computação -
ICMC/USP, 2006. In Portuguese.

[20] Alessandro Fantechi, Stefania Gnesi, Isabel John, Giuseppe Lami, and Jörg Dörr. Elicitation
of use cases for product lines. In Frank van der Linden, editor, Software Product-Family
Engineering, volume 3014 of Lecture Notes in Computer Science, pages 152–167. Springer
Berlin / Heidelberg, 2004.

[21] Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna, Mario Monteiro, Uira Kulesza, Alessan-
dro Garcia, Sérgio Soares, Fabiano Ferrari, Safoora Khan, Fernando Castor Filho, and Fran-
cisco Dantas. Evolving software product lines with aspects: an empirical study on design
stability. In Proceedings of the 30th international conference on Software engineering, pages
261–270, New York, NY, USA, 2008. ACM.

46

[22] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Publishing Company, 1st edition,
July 1999.

[23] William Frakes and Carol Terry. Software reuse: metrics and models. ACM Comput. Surv.,
28:415–435, June 1996.

[24] Hassan Gomaa. Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 2004.

[25] William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle, Nishit Tewari, Yuan-
fang Cai, and Hridesh Rajan. Modular software design with crosscutting interfaces. IEEE
Softw., 23(1):51–60, 2006.

[26] Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development with Use Cases
(Addison-Wesley Object Technology Series). Addison-Wesley Professional, 2004.

[27] Isabel John and Jörg Dörr. Elicitation of requirements from user documentation. In Ninth
International Workshop on Requirements Engineering: Foundation for Software Quality. Refsq
’03. Klagenfurt/Velden, 2003.

[28] Kyo Kang, Moonzoo Kim, Jaejoon Lee, and Byungkil Kim. Feature-oriented re-engineering of
legacy systems into product line assets : a case study. In Software Product Line Conference,
2006.

[29] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang Huh.
Form: A feature-oriented reuse method with domain-specific reference architectures. Ann.
Softw. Eng., 5:143–168, January 1998.

[30] Charles W. Krueger. Easing the transition to software mass customization. In PFE ’01: Revised
Papers from the 4th International Workshop on Software Product-Family Engineering, pages
282–293, London, UK, 2002. Springer-Verlag.

[31] Axel Anders Kvale, Jingyue Li, and Reidar Conradi. A case study on building cots-based sys-
tem using aspect-oriented programming. In SAC ’05: Proceedings of the 2005 ACM symposium
on Applied computing, pages 1491–1498, New York, NY, USA, 2005. ACM.

[32] Hyesun Lee, Hyunsik Choi, Kyo C. Kang, Dohyung Kim, and Zino Lee. Experience report on
using a domain model-based extractive approach to software product line asset development. In
ICSR ’09: Proceedings of the 11th International Conference on Software Reuse, pages 137–149,
Berlin, Heidelberg, 2009. Springer-Verlag.

[33] Kwanwoo Lee and Kyo C. Kang. Feature dependency analysis for product line component
design. 3107:69–85, 2004.

[34] Kwanwoo Lee, Kyo Chul Kang, and Jaejoon Lee. Concepts and guidelines of feature modeling
for product line software engineering. In Proceedings of the 7th International Conference on
Software Reuse: Methods, Techniques, and Tools, ICSR-7, pages 62–77, London, UK, 2002.
Springer-Verlag.

Public Health Complaint Software Product Line 47

[35] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007.

[36] Ana Moreira, João Araújo, and Isabel Brito. Crosscutting quality attributes for requirements
engineering. In Proceedings of the 14th international conference on Software engineering and
knowledge engineering, SEKE ’02, pages 167–174, New York, NY, USA, 2002. ACM.

[37] Ana Moreira, João Araújo, and Awais Rashid. A concern-oriented requirements engineering
model. In Oscar Pastor and João Falcão e Cunha, editors, Advanced Information Systems
Engineering, volume 3520 of Lecture Notes in Computer Science, pages 55–100. Springer Berlin
/ Heidelberg, 2005.

[38] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Berlin Heidelberg New York, 2005.

[39] Awais Rashid, Ana Moreira, and Joāo Araújo. Modularisation and composition of aspectual
requirements. In AOSD ’03: Proceedings of the 2nd international conference on Aspect-oriented
software development, pages 11–20, New York, NY, USA, 2003. ACM.

[40] Matthias Riebisch and Robert Brcina. Optimizing design for variability using traceability
links. In Proceedings of the 15th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, pages 235–244. IEEE Computer Society, Washington,
DC, USA, 2008.

[41] Martin P. Robillard and Gail C. Murphy. Representing concerns in source code. ACM Trans.
Softw. Eng. Methodol., 16, February 2007.

[42] Cećılia M. F. Rubira, Rogerio de Lemos, Giselle R. M. Ferreira, and Fernando Castor Filho.
Exception handling in the development of dependable component-based systems. Software:
Practice and Experience, 35(3):195–236, 2005.

[43] Americo Sampaio. Analysis of the HealthWatcher system using Viewpoint-
based AORE and the EA-Miner tool - version 2. Available from: URL:
http://www.comp.lancs.ac.uk/˜greenwop/tao/requirements.htm.

[44] Periklis Sochos, Matthias Riebisch, and Ilka Philippow. The feature-architecture mapping
(farm) method for feature-oriented development of software product lines. In ECBS ’06:
Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering
of Computer Based Systems, pages 308–318, Washington, DC, USA, 2006. IEEE Computer
Society.

[45] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[46] Leonardo P. Tizzei, Marcelo Dias, Cećılia M.F. Rubira, Alessandro Garcia, and Jaejoon Lee.
Components meet aspects: Assessing design stability of a software product line. Information
and Software Technology, 53(2):121 – 136, 2011.

48

[47] Leonardo P. Tizzei, Jaejoon Lee, and Cećılia M.F. Rubira. An aspect-oriented feature view
to support feature-oriented reengineering process. In 13th International Workshop on Aspect-
Oriented Modeling, co-located with MODELS, Oslo, Norway, October 2010.

[48] Leonardo P. Tizzei and Cećılia M.F. Rubira. Aspect-connectors to support the evolution of
component-based product line architectures: a comparative study. In ECSA’11: European
Conference on Software Engineering. September 2011.

[49] Eddy Truyen, Bo Nørregaard Jørgensen, Wouter Joosen, and Pierre Verbaeten. Aspects for
run-time component integration. In In Proceedings of the ECOOP 2000 Workshop on Aspects
and Dimensions of Concerns, Cannes, France, 2000.

Public Health Complaint Software Product Line 49

Figure 13: FArM transformation 1

50

Figure 14: FArM transformation 2

Public Health Complaint Software Product Line 51

Figure 15: FArM transformation 3

52

Figure 16: FArM transformation 4

Public Health Complaint Software Product Line 53

1 f i n d <a p p l i c a t i o n source f o l d e r > −name ” ∗ . java ” −or −name ” ∗ . a j ” | xargs more | wc

Figure 17: The above script counts the LOC of all files whose extensions are either .java or .aj

1 f i n d <a p p l i c a t i o n source f o l d e r > −name ” ∗ . java ” −or −name ” ∗ . a j ” | wc

Figure 18: The above script counts the number of files whose extensions are either .java or .aj

1 #!/ bin / bash/
for i in $ (l s) ; do

3 f i n d $ i −name ” ∗ . java ” −or −name ” ∗ . a j ” | xargs more | grep −E pub l i chea l thcompla in t .
| grep −v pub l i chea l thcompla in t . $ i | s o r t −nk 2 > $ i . txt

5 done

Figure 19: The above script supports the collection of coupling metric

