
Information and Software Technology 52 (2010) 31–51
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Characterizing software architecture changes: A systematic review

Byron J. Williams a, Jeffrey C. Carver b,*

a Department of Computer Science and Engineering, Mississippi State University, United States
b Department of Computer Science, University of Alabama, Box 870290, 101 Houser Hall, Tuscaloosa, AL 35487-0290, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 December 2008
Received in revised form 9 July 2009
Accepted 13 July 2009
Available online 18 July 2009

Keywords:
Software architecture
Software maintenance
Change characterization
Software evolution
Systematic review
Software changes
0950-5849/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.infsof.2009.07.002

* Corresponding author. Tel.: +1 205 348 9829; fax
E-mail addresses: bjw1@cse.msstate.edu (B.J. Willi
With today’s ever increasing demands on software, software developers must produce software that can
be changed without the risk of degrading the software architecture. One way to address software changes
is to characterize their causes and effects. A software change characterization mechanism allows devel-
opers to characterize the effects of a change using different criteria, e.g. the cause of the change, the type
of change that needs to be made, and the part of the system where the change must take place. This infor-
mation then can be used to illustrate the potential impact of the change. This paper presents a systematic
literature review of software architecture change characteristics. The results of this systematic review
were used to create the Software Architecture Change Characterization Scheme (SACCS). This report
addresses key areas involved in making changes to software architecture. SACCS’s purpose is to identify
the characteristics of a software change that will have an impact on the high-level software architecture.

� 2009 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 32
2. Background. 33
2.1. Software change . 33
2.2. Change classification . 33
3. Research method . 34

3.1. Research questions . 34
3.2. Sources selection and search . 34
3.3. Data extraction and quality assessment . 35
4. Reporting the review . 35

4.1. Research question 1: what are the attributes in existing software change classification taxonomies?. 35
4.1.1. Prescriptive change types. 35
4.1.2. Source code changes. 36
4.1.3. Organizational influence . 37
4.2. Research question 2: how are software architecture elements and relationships used when determining the effects of a software change? 37
4.3. Research question 3: How is the architecture affected by functional and non-functional changes to the system requirements? 37
4.4. Research Question 4: How is the impact of architecture changes qualitatively assessed? . 38
4.5. Research Question 5: What types of architecture changes can be made to common architectural views? . 38
4.6. SACCS exclusion criteria . 39
5. Software architecture change characterization scheme (SACCS). 39

5.1. Characterization scheme overview. 39
5.2. General characteristics . 39
5.2.1. Motivation. 39
5.2.2. Source . 40
5.2.3. Criticality/importance. 40
5.2.4. Developer experience . 40
5.2.5. Category . 40
ll rights reserved.

: +1 250 348 0219.
ams), carver@cs.ua.edu (J.C. Carver).

http://dx.doi.org/10.1016/j.infsof.2009.07.002
mailto:bjw1@cse.msstate.edu
mailto:carver@cs.ua.edu
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

32 B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51
5.2.6. Granular effect . 40
5.2.7. Properties . 41
5.2.8. Features. 41
5.2.9. Quality attributes . 41
5.2.10. Logical . 41
5.2.11. Runtime. 41
5.2.12. Complete general characterization scheme . 42
5.3. Specific characterization . 42

5.3.1. Logical views. 42
5.3.2. Runtime views . 42
5.4. Excluded attributes . 42

6. Research implications and conclusions. 42

Acknowledgements . 45
Appendix A. 45
Appendix B . 46
References . 48
1. Introduction

Software change is inevitable. All software systems must evolve
to meet the ever-expanding needs of its users. Therefore, it is vital
for organizations to perform software maintenance in such a way
as to reduce complications arising from changes and the potential
for new bugs to be introduced by the change. Software developers
need a comprehensive solution that helps them understand
changes and their impact. This understanding is important be-
cause, as changes are made architectural complexity tends to in-
crease, which will likely result in an increase in the number of
bugs introduced [50,65,114]. Architectural complexity measures
the extent to which the behavior of one component can affect
the behavior of other components from an architectural standpoint
[16]. A complex system is potentially less understandable for
developers resulting in decreased quality and a system that is more
difficult to maintain [13]. Software quality is the degree to which
software possesses a desired combination of quality attributes
[1]. Due to the number and frequency of changes that mature sys-
tems undergo, software maintenance has been regarded as the
most expensive phase of the software lifecycle.

Late-lifecycle changes are changes that occur after at least one
cycle of the development process has been completed and a work-
ing version of the system exists. These unavoidable changes pose
an especially high risk for developers. Understanding late-lifecycle
changes is important because of their high cost, both in money and
effort, especially when they are due to requirements changes. Fur-
thermore, these late-lifecycle changes tend to be the most crucial
changes because they are the result of better understood customer
and end-user needs. As these late changes are made, system com-
plexity tends to increase. Different names have been given to this
phenomenon of increasing complexity. Eick, et al., called the prob-
lem code decay. They examined a 15-year old system and found
that it became much harder to change over time. One cause of this
decay was the violation of the original architectural design of the
system [50]. Lindvall, et al., called the problem architectural degen-
eration. This term is used to describe the deviation of the architec-
ture They found that even for small systems the architecture must
be restructured when the difficulty of making a change becomes
disproportionately large relative to its size [93]. Parnas used the
term software aging to identify the increased complexity and de-
graded structure of a system. He noted that a degraded structure
or architecture would increase the number of bugs introduced dur-
ing incremental changes [114]. And finally, Brooks stated that ‘‘all
repairs tend to destroy the structure, to increase the entropy and
disorder of the system. . .more and more time is spent on fixing
flaws introduced by earlier fixes” [35].
Flexibility is a quality property of the system that defines the ex-
tent in which the system allows for unplanned modifications [116].
Flexibility is reduced when late changes draw the system away
from its original design. There are many sources of late-lifecycle
changes including: defect repair, adapting to changing market con-
ditions or software environments, and evolving user requirements.
Due to the time pressure resulting from these crucial late-lifecycle
changes, developers often cannot fully evaluate the architectural
impact of each change. As a result, the architecture degrades (i.e.,
becomes increasingly difficult to change), escalating the likelihood
of faults and the difficulty of making future changes [50,84,114].

When dealing with late-lifecycle changes, it is important to fo-
cus on the software architecture, a high-level representation that
defines the major structure and interactions of the internal compo-
nents of a system and the interactions between the system and its
environment [59]. When a change affects the architecture, the ori-
ginal architectural model must be updated to ensure that the sys-
tem remains flexible and continues to function as originally
designed. When an architectural change causes the interactions
to become more complex, which in turn causes the system to be
more difficult to change, the architecture is degenerating. Architec-
tural degeneration is a mismatch between the actual functions of
the system and its original design. Because architectural degener-
ation is confusing for developers, the system must undergo either
a major reengineering effort or face early retirement [65].

To address these problems, developers need a way to better
understand the effects of a change prior to making it [100]. The
high-level goal of this research is to:

Identify and characterize the types of changes that affect software
and develop a framework for analysis and understanding of change
requests.

This paper presents a systematic literature review of software
change. The goal of the review was to identify and characterize
software architecture changes to determine the types of changes
that impact software architectures. A systematic literature review
is a formalized, repeatable process in which researchers systemat-
ically search a body of literature to document the state of knowl-
edge on a particular subject. A systematic review provides the
researchers with more confidence in their conclusions compared
with an ad hoc review. A needs assessment conducted prior to
the review indicated several key areas that must be addressed to
improve the software change process.

� Change understanding and architecture analysis: Prior to making a
change, it is important for a software developer to understand
how it will impact the architecture. A change analysis tool

B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51 33
should allow the developer to analyze a change prior to imple-
mentation to understand the change, the architecture, and
how the change fits with the architecture [11,25,53,113].

� Build historical baseline of software change data: The ability to
compare a change request to a system’s history will provide
insight into the change impact, difficulty, and required effort.
Recording information about the change type, its impact on
the architecture and the effort required will provide insight into
future changes [85].

� Group changes based on impact/difficulty: Change requests can be
grouped based on their characteristics. Similar changes should
exhibit a similar impact on the system. Heuristics can be devel-
oped to handle certain types of changes [71,112].

� Facilitate discussion among developers: methods that facilitate
discussion among the development team are useful in achieving
consensus on the implementation approach. A characterization
scheme should facilitate consensus building by providing a list
of the items to discuss to prevent the change from violating
the planned architectural structure [64,100].

� Facilitate change difficulty/complexity estimation: The character-
ization scheme should allow a developer to determine change
complexity as a function of type and size. Characterizing the
context of the change request (i.e., a description of influencing
factors external to the request) should also help facilitate diffi-
culty estimation because certain types of changes may be more
difficult in certain domains than others [13,77].

The output of the review provides insight into the architectural
change process and describes the effects that changes can have on
architecture. As a result of the review findings, the Software Archi-
tecture Change Characterization Scheme (SACCS) was created. The
attributes of the proposed scheme were extracted from change
taxonomies and associated change characteristics identified during
the review.

The remainder of this paper is organized as follows. Section 3
discusses the review method. The results of the systematic review
are summarized in Section 4. Section 5 reports on the development
of SACCS. Section 2 describes background and related work. Finally,
the results are discussed and future work is presented in Section 6.
2. Background

This section discusses previous work about software change,
late changes and change classifications. Then it provides the moti-
vation for conducting this systematic review.
2.1. Software change

Software change is a long-studied topic. Manny Lehman, a pio-
neer of the study of software changes, developed the Laws of Soft-
ware Evolution [84]. These laws describe recurring issues related
to the evolution of E-type software. An E-Type system is one that
functions in the real world and therefore must continually evolve
to maintain user satisfaction [87]. For our current work, laws I, II,
VI, and VII are the most relevant and are described in more detail
in this section.

Law I, Continuing Change, states that software undergoes never-
ending maintenance and development that is driven by the mis-
match between current capability and environmental require-
ments [84]. This mismatch could be the result of changes in
protocols and standards used to communicate with other systems.
It could also be the result of changes in hardware or the need to
more efficiently utilize hardware resources. An understanding of
the reasons for a change supports the development of systematic
processes to handle change.
As systems change, they will become more complex if those
changes are not properly handled. Law II, Increasing Complexity,
captures this situation. This law simply states that changes im-
posed by system adaptation lead to an increase in the interac-
tions and dependencies among system elements. These
interactions may be unstructured and increase the system entro-
py. If entropy is not properly handled, the system will become
too complex to adequately maintain. Law II is one of the primary
reasons why the maintenance phase is typically the most expen-
sive phase of software development. In order to better manage
system complexity, developers need improved ways of under-
standing changes and how to incorporate change into system
architectures.

It has been shown that the number of system modules increases
with each incremental system release [84]. Law VI, Continuing
Growth, focuses on user needs by stating that the functionality of
software systems must continually increase to maintain user satis-
faction over the lifetime of a system [83]. This law, while similar to
Law I, reflects a different phenomena. The law addresses the ten-
dency of the user base to become increasingly sophisticated and
demand a more robust set of features resulting in software growth
to meet their needs. This growth includes adaptation of features
that do not adequately meet user needs.

The previous three laws induce Law VII, Declining Quality [83].
As systems continually change (Law I), complexity increases (Law
II). The introduction of new features to a system causes it to grow
(Law VI). These factors all reduce the perceived quality of a system.
When the quality of the system is reduced, it becomes more expen-
sive to maintain because of an increase in the number of problems
encountered by users. These changes are likely to further increase
the complexity and growth of the system which will, in turn, fur-
ther reduce the quality [83]. This cycle results in a continuous
downward spiral of quality.

The Laws of Software Evolution have been extensively studied
[17,18,37,38,47,57,63,81,86,88,107,115,136]. In understanding
these laws, and the necessity of software change, researchers have
developed methods for handling changes, e.g., using change classi-
fication schemes, performing impact analysis, and building effort
prediction models. These methods are continuing to improve. As
more research is performed to understand changes, more can be
done to help engineers implement changes. Practitioners then will
not have to suffer from an uncontrollable increase in complexity or
decline in quality [30].
2.2. Change classification

Change classification schemes have been used to qualitatively
assess the impact and risks associated with making certain types
of changes [31,32]. Software change classification schemes also al-
low engineers to group changes based on different criteria, e.g. the
cause of the change, the type of change, the location of the change,
the size of the code modification or the potential impact of the
change. Another benefit of change classification is that it allows
engineers to develop a common approach to address similar
changes thereby reducing overall effort compared with addressing
each change individually [111].

Lientz and Swanson’s work identified the frequency of the dif-
ferent types of maintenance activities performed by software
development organizations [90]. Based on their work and work
by Sommerville, four major types of changes were identified. Per-
fective changes result from new or changed requirements. These
changes improve the system to better meet user needs. Corrective
changes occur in response to defects. Adaptive changes occur
when moving to a new environment or platform or to accommo-
date new standards [128]. Finally, preventative changes ease

34 B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51
future maintenance by restructuring or reengineering the system
[106].

The architectural change process identified by Nedstam de-
scribes the change process as a series of steps [108]:

1. Identify an emergent need.
2. Prepare resources to analyze and implement change.
3. Make a go/no-go feasibility decision.
4. Develop a strategy to handle the change.
5. Decide what implementation proposal to use.
6. Implement the change.

An architectural change characterization scheme will address
steps 2, 3, and 4 by helping developers conceptualize the impact
of a proposed change by characterizing the features of the change
request.
3. Research method

A systematic review is a means of identifying, evaluating and
interpreting the available research related to a research question,
topic area, or phenomenon. The main purpose for conducting a sys-
tematic review is to gather evidence on which to base conclusions.
They are commonly used to support or contradict claims made by
researchers, identify gaps in existing research, provide motivation
for new research, and supply a context for the new research. A sys-
tematic review consists of planning, conducting and reporting the
review [72]. Within those three phases are the following steps:

1. Identification of the need for a systematic review.
2. Formulation of a focused review question.
3. A comprehensive, exhaustive search for primary studies.
4. Quality assessment of included studies.
5. Identification of the data needed to answer the research

question.
6. Data extraction.
7. Summary and synthesis of study results (meta-analysis).
8. Interpretation of the results to determine their applicability.
9. Report-writing.

We used the systematic review protocol template prescribed by
Biolchini to perform the review [24]. This review protocol was
modified to encompass the requirements of this review and is de-
scribed in the next section. The remainder of this section describes
the steps performed to complete the review.
Table 1
Research questions.

Research question Motivation

1. What are the attributes of existing software change classification
taxonomies?

This question p
answers to this
scheme

2. How are software architecture elements and relationships used
when determining the effects of a software change?

One requireme
developer’s ass
characteristics

3. How is the architecture affected by functional and non-functional
changes to the system requirements?

Software archit
The impact of a
goal here was t
functional requ

4. How is the impact of architecture changes qualitatively assessed? Developers ofte
system. The int
abstraction to u

5. What types of architecture changes can be made to common
architectural views?

Understanding
a list of alterna
possible change
of the request
3.1. Research questions

The review goal was to identify software change characteristics
that affect architecture. We began by defining several research
questions to focus the review. The high-level question was:

Can a broad set of characteristics that encompass changes to soft-
ware architectures be identified using the current software engi-
neering body of knowledge and be used to create a
comprehensive change assessment framework?

This research question was then refined to 5 more specific ques-
tions. These questions, along with the motivation for each one, are
shown in Table 1.

3.2. Sources selection and search

The primary studies used in this review were obtained from
searching databases of peer-reviewed software engineering re-
search that met the following criteria:

� Contains peer-reviewed software engineering journals arti-
cles, conference proceedings, and book chapters.

� Contains multiple journals and conference proceedings,
which include volumes that range from 1970 to 2007.

� Used in other software engineering systematic reviews
[29,61,68,73,99].

The resulting list of databases was:

� ACM Digital Library
� Google Scholar
� IEEE Electronic Library
� Inspec
� Scirus (Elsevier)
� SpringerLink

The database searches resulted in a large number of candidate
papers. The inclusion/exclusion criteria shown in Table 2 were
used to narrow the search to relevant papers. Papers that
addressed specialized areas of software development or any non-
object-oriented software were also excluded because the goal
was to generalize these results to a broad range of domains. The
population of this study is the domain of software maintenance.
Intervention includes applying changes throughout the maintenance
process. The outcomes of the search represents different types of
rovides a starting point for creating a framework for change assessment. The
question present the basis on which to define, build, and refine the attributes of the

nt of developing the framework is to understand the role of architecture in a
essment of change impact. The answer is important in understanding architectural
that affect change implementation difficulty
ectures are important in exhibiting the non-functional requirements of a system.
n architectural change due to a functional requirement may be less important. The

o differentiate, if possible, the architectural effects of changes to functional and non-
irements
n have differing views on the best way a change should be implemented to a
ernal processes that developer’s use when assessing a change is an important
nderstand in developing a change assessment scheme

how an architecture changes is important if your goal is to provide developers with
tives for making decisions about changing the architecture. Having this list of the
s can lessen the cognitive load on the developer to a set of choices given the context

Table 2
Inclusion/exclusion criteria.

Inclusion Criterion Exclusion Criterion

� Papers that address change classification at any level of abstraction (i.e.,
class, package, subsystem, and architecture)

� Papers that identify procedures and techniques for change impact
analysis

� Papers that discuss the effects of changing software architectures
� Empirical studies of software changes
� Case studies of software change frameworks and change assessment

methodologies
� Experience reports detailing software changes

� Papers that are based only on expert opinion
� Short papers, introductions to special issues, tutorials, and mini-tracks
� Studies presented in languages other than English
� Studies whose findings are unclear and ambiguous
� Papers that describe changes to aspect-oriented software, self-adaptive software systems,

embedded systems, and dynamic software architectures

B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51 35
characteristics identified when making a change to a software sys-
tem. The experimental designs of the studies include empirical stud-
ies, case studies, and experience reports.

This inclusion/exclusion criteria was applied by:

1. Reading the title to eliminate any irrelevant papers.
2. Reading the abstract and keywords to eliminate additional

papers whose title may have fit, but abstract did not relate to
any of the research question.

3. Reading the remaining papers and including only those that
addressed the research questions.

The research questions were reduced to a series of search
strings that were executed in the selected databases. The search
strings can be found in Appendix A, Table A.1. These searches re-
turned thousands of papers. Google Scholar returned greater than
1 million results and the ACM Digital Library returned as many
as 30,000 for one search. Each database returned the most relevant
searches first. We used this factor to eliminate results that were
not relevant. We scanned each title in order until papers were
reached that did not have any relevance to this study. This includes
papers that were from different technical domains and papers
where software engineering was not the focus. Using this ap-
proach, the initial results were filtered down to 2752 papers. This
number was then further reduced to 523 after detailed analysis
of the titles, and then to 220 upon reading the abstract. These
220 papers were read and 130 were chosen based on the exclu-
sion/inclusion criteria. Of the 130 primary studies, 36 were pub-
lished in scholarly journals and 94 in conference proceedings. In
addition to the primary studies, 8 books were referenced to pro-
vide additional background data on software architectures and
software [12,27,45,55,84,90,127,128]. Four technical reports were
also found that met the inclusion/exclusion criteria [16,56,
103,129] and three standards documents [2–4]. Prior to conducting
the systematic search, we were aware of a number of papers that
were relevant. As an indicator of the completeness of the review,
we again found all of those papers through our search. [7,20,22,
30,41,44,51,65,66,76,77,82–84,94,96,104,106,108,120,122,130,138].
Table 3 lists the paper distribution by source.
3.3. Data extraction and quality assessment

A data extraction form was used to extract relevant data from
each paper. The form includes the superset of all data items exam-
ined for each study. Every paper did not provide information for
each data item, but if the information was included, it was re-
corded in the form. The data extraction form is show in Table 4.

Using the data extraction form, one of us reviewed all papers
and extracted data. Then, the other one independently reviewed
and extracted data from a sample of the papers. We then analyzed
our extracted data for consistency. We found that we had consis-
tently extracted information from the sample of papers given that
we both knew the aims of the research and criteria for paper
selection. When there were, at times, minor discrepancies in the
information extracted, we reviewed the extraction forms and dis-
cussed the findings to resolve any inconsistencies or differing
interpretations in the extraction process. As a result, there were
no disagreements after these short discussions. This process is con-
sistent with the process followed in previous systematic reviews
[61,68,72,99].

The papers that were included in the results were checked using
the quality criteria below.

� The goals of the research are clearly defined.
� The studies methods were well defined and deliberate.
� The study environment and contexts are clearly stated.
� The observations/results support the conclusions.
� The study addresses threats and minimizes bias.
� The study can be repeated.
� The research add value to the software engineering

community.

There were two studies removed due the quality criteria
[59,89]. The data extracted from all papers was then synthesized
to answer each question.
4. Reporting the review

This section details the findings of the review. The results of the
review are presented to answer each Research Question listed in
Table 1. This information provides the basis for the creation of
the Software Architecture Change Characterization Scheme de-
scribed in Section 5.

4.1. Research question 1: what are the attributes in existing software
change classification taxonomies?

Of the studies found that reported on change classification, sev-
eral focused on classifying source code changes, others identified
organizational, management, and external factors as influencers
of change implementation. There were also studies that examined
the features of the change requests to determine their effects on
the system. And finally, there were change taxonomies that focused
on how system designs would be affected by a change. Based on an
examination of the general characteristics of change classification
taxonomies, the major categories of change taxonomies are listed
below. For each category, we provide the related findings based
on the high-level change classification types that we identified.

4.1.1. Prescriptive change types
Prescriptive changes ‘prescribe’ a course of action that is typical

for addressing that change type. Change taxonomies of this cate-
gory generally originated from the work done by Lientz and Swan-
son [90,133]. Much of their work was incorporated in the seminal

Table 3
Paper distribution.

Source Count %

International Conference on Software Maintenance 21 16.15
IEEE Transactions on Software Engineering 10 7.69
International Conference on Software Engineering 9 6.92
European Conference on Software Maintenance and Reengineering 7 5.38
IEEE Symposium on Software Metrics 6 4.62
International Symposium on Principles of Software Evolution 6 4.62
Journal of Software Maintenance and Evolution: Research and Practice 6 4.62
Working IEEE/IFIP Conference on Software Architecture 4 3.08
IEEE Software 3 2.31
Information and Software Technology 3 2.31
International Conference on Computer Systems and Applications 3 2.31
International Workshop on Mining Software Repositories 3 2.31
Journal of Systems and Software 3 2.31
Annual NASA Goddard/IEEE Software Engineering Workshop 2 1.54
Asia Pacific Conference on Software Engineering 2 1.54
Communications of the ACM 2 1.54
Empirical Software Engineering 2 1.54
IEEE International Workshop on Software Evolvability 2 1.54
International Conference on Automated Software Engineering 2 1.54
International Conference on Quality Software 2 1.54
International Conference on Software Engineering and Knowledge Engineering 2 1.54
International Software Architecture Workshop 2 1.54
International Symposium on Empirical Software Engineering 2 1.54
Working Conference on Reverse Engineering 2 1.54
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications 1 0.77
Annual Hawaii International Conference on System Sciences 1 0.77
Australian Software Engineering Conference 1 0.77
Bell Labs Technical Journal 1 0.77
Conference of the Centre for Advanced Studies on Collaborative Research 1 0.77
Cutter IT Journal 1 0.77
EUROMICRO Conference on Software Engineering and Advanced Applications 1 0.77
IEEE International Requirements Engineering Conference 1 0.77
IEEE International Symposium on Requirements Engineering 1 0.77
IEEE International Symposium on Visual Languages 1 0.77
IEEE Region 10 International Conference 1 0.77
IEEE Symposium and Workshop on Engineering of Computer-Based Systems 1 0.77
International Conference on Information Systems 1 0.77
International Software Process Workshop 1 0.77
International Conference on Applying the Software Processes 1 0.77
International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing 1 0.77
International Journal of Software Engineering and Knowledge Engineering 1 0.77
International Process Support of Software Product Lines Software Process Workshop 1 0.77
International Workshop on Program Comprehension 1 0.77
Proceedings of the IEEE 1 0.77
Science of Computer Programming 1 0.77
Software – Practice and Experience 1 0.77
Software Process Improvement and Practice 1 0.77
Workshop on Unanticipated Software Evolution 1 0.77

Total 130 100%

Table 4
Data extraction form.

Data item Description

Focus of article State the main objective of the article
Attributes of change classification

scheme and definitions
List any categories of changes identified by
the article and their definitions

Description of changes Describe the different types of changes that
were made

Impact analysis techniques Describe how the techniques are used to
perform impact analysis

Impact quantification Describe how the impact was measured
Software architecture impact Describe how the system architecture was

impacted by any change
Changes to software architecture Describe what exactly changed in the system

architecture
Quantitative Results Record quantitative empirical results
Qualitative Results Record qualitative empirical results
Related References Record additional references that pertain to

the research questions

36 B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51
text on software engineering by Sommerville [128]. They identified
four types of maintenance activities: perfective, corrective, preven-
tative, and adaptive. There have been numerous studies on these
four types (or a subset of the four) that attempt to measure fre-
quency and potential impact [6,19,30,50,66,69,103,105,106,
119,126].

Other researchers have expanded on the four major change
types. Evaluative, consultive, training, updative, reformative, perfor-
mance, groomative, reductive, were identified in addition to the gen-
eral change types called enhancive, adaptive, and corrective [40].
Retrenchment, retrieving, prettyprinting, and documentation were la-
ter added to the adaptive and corrective change types [91]. Some
have analyzed changes to design patterns and created design evo-
lution patterns: intensive evolution (e.g., requirements change, bug
fix and design improvement), extensive evolution (e.g., new require-
ments and accommodating new operating environment) and evo-
lution operations (e.g., module replacement and connection
change) [8].
4.1.2. Source code changes
Early research focused specifically on source code changes. One

study evaluated signature changes, that is, small changes to func-

B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51 37
tion names, parameters, or orderings in source code [70]. Another
source code taxonomy that examined the results of adding, delet-
ing, and modifying fields, methods, and classes [122]. Atomic
changes and their affect on code structures such as scope changes,
inheritance deviation, signature changes, modifier, attribute, class dec-
laration, interface and variable changes have also been analyzed in
detail [42,43,54,76]. Source changed that were frequently applied
were observed and classified based on their causes including intro-
duction of duplicated code, repositioning a code fragment, and tempo-
rarily adding a code fragment [139].

4.1.3. Organizational influence
External factors have been identified in change taxonomies as a

way of determining how the development organization influences
change management and implementation. For example, developer
experience is a characteristic of the organization responsible for
implementing a change request [49,92]. The Prism Model of
changes classified changes based on their effect on environmental
infrastructures (change and dependency structures). The depen-
dency structures outlined in the Prism Model defined representa-
tion of factors, which included people, policies, laws, processes, and
resources that affect change implementation from the organiza-
tional standpoint. This change structure facilitated the classifica-
tion, recording, and analysis of change data [94,95].

Changes have also been characterized based on their origin,
cause, process elements, phase, kind of change, and modifier (devel-
oper responsible) [109]. Others have found organizational profiles
that are important in understanding change including project man-
ager, participants, contractual-constraints, project size, external sup-
pliers, customers, operating-platform, and implementation-
languages [46]. Finally, Lam identifies ten change management is-
sues that are essential to an effective change management process
including the importance of stakeholder consensus in making
changes and assessing risk [78].

In summary, each of the papers discussed in this section pro-
vides varying views of characterizing software changes. This di-
verse compilation of attributes are a means of classifying the
features of a change request and interpreting its effect on the
system.

4.2. Research question 2: how are software architecture elements and
relationships used when determining the effects of a software change?

Software architectures are described in terms of components
and connectors, modules and relationships, and the topology that
manages the architectural entities. Software architectures exhibit
certain properties such as coupling and cohesion. Coupling can
be used to analyze the complexity of the architecture. Changes to
architectures can positively or negatively affect coupling. Therefore,
the change can affect system complexity or understandability
[33,34,121]. Architectural degeneration is a phenomenon that oc-
curs as changes increase coupling, thereby increasing complexity
[65]. Architectural evaluations have been used to determine the
relationship of changes to: coupling between modules and cou-
pling between module classes [93,137,138]. In these instances,
coupling affected complexity and understandability. A distinction
can also be made between design space changes (logical structure,
interface, and package) and implementation space changes (build
components and header files) [143]. Finally, modules can be char-
acterized by the frequency of change. Core architecture modules
infrequently change while non-core or new modules are changed
more frequently [60].

Another area of focus is characterizing evolution. The ‘‘Phasic
Analysis” technique identified six evolution profiles describing
how the architecture changes over time: intense evolution, rapidly
developing, restructuring, slowly developing, steady-state, and pend-
ing. [141]. Another framework, created to facilitate component
replacement in long-lived architecture, helps to determine
whether a component should be replaced or adapted to new technol-
ogy. The framework determines the quality properties defined by
the architecture that will be affected when making a change such
as performance issues, stability, scalability, and compatibility
[117]. This research shows how different types of architecture
changes can impact the maintenance process. A framework that
transformed architecture patterns using transformation rules and
exhibited transformational behaviors was developed and includes
the following attributes: superposition, conditional superposition,
substitution, and conditional substitution [15]. Others have pointed
out the importance of assessing the impact of dynamic architecture
properties in addition to static architecture properties [52].

All of the topics discussed in this section used architecture char-
acteristics to assess and make determinations about maintenance.
Several of the papers identified express the importance of the log-
ical decomposition at the architectural level and others address
runtime characteristics. These two facets of software architecture
are important when determining how a system may evolve.
4.3. Research question 3: How is the architecture affected by functional
and non-functional changes to the system requirements?

It has been shown that for many systems, that the majority of
changes are requested in order to improve quality and enhance
functionality [106]. Software architectures have been used to doc-
ument how quality attributes and non-functional requirements are
fulfilled [39,131,132]. When a modification affects a non-func-
tional attribute (e.g., increasing system performance), the architec-
ture is often affected also [23]. The effect of functional changes is
not as obvious. Research Question 3 was asked to determine the ef-
fect that changing a system’s architecture has on system quality
and functional enhancements.

A software change can be a strictly functional change (affecting
only user-observable attributes), a strictly architectural change
(affecting only the architecture, unnoticeable to the user), or an
architectural/functional change (a mix of the two) [108]. The three
major types of evolution, considering source code features, that
have the greatest architectural effect are: interface evolution, imple-
mentation evolution, and structural evolution [134]. These categories
correspond to the strictly functional (interface evolution), architec-
tural/functional (implementation evolution), and architectural
(structural evolution) changes. Although strictly functional
changes do not impact the architecture, the architecture does
determine the location of the change. Therefore, architectural
assessment is important for all three types of changes.

Functional changes may not result in a structural change to the
architecture, but they do affect the portion of the architecture that
is responsible for providing the specified feature. Therefore, most
architecture modules can be characterized based on the features
they provide. There are six functional software areas: data handling
(data formats, record segments, databases or files, and establish-
ment of parameters), control flow (references to changes in logic
and program structure), initialization (source code modifications
establishing constraints or initial data values), user interface (mod-
ifications of human–computer interfaces), computation (modifica-
tions for equations and functions), and module interface (changes
in communication links between modules and/or submodules)
[18,124]. Another way to look at functional changes is to determine
the impact of the change on a module. The important impact fac-
tors include: configuration file changes, data changes, functionality
changes to the source code, and architecture changes which were
additions and/or deletions to architecture modules and connec-
tions [98].

38 B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51
Strictly architectural changes are those that have an impact
only on the system architecture. These changes include refactoring
and restructuring the architecture to enhance quality attributes
[55,101]. They refer to internal changes that do not modify the
external functionality of the system [55,67]. A preventative change
is also a change that is strictly architectural in terms of its impact.
These changes involve modifying an architecture component to
‘prevent’ problems in the future. These changes improve on non-
functional quality attributes such as understandability, modifiabil-
ity, and complexity [106].

In summary, software architectures have a substantial role in
changes that address non-functional requirements (i.e., quality
attributes). They play a lesser role in addressing purely functional
changes. There exists a spectrum of changes ranging from purely
architectural changes, to architectural/functional changes, and
purely functional changes. Purely architectural changes consist of
refactorings and changes to system structure. Purely functional
changes affect some user-observed feature.

4.4. Research Question 4: How is the impact of architecture changes
qualitatively assessed?

Change impact analysis is important because it can also assist in
determining the amount of effort required to implement the
change [111]. Thus, impact analysis can be approached in two
ways. The most common way is to directly determine which code
should be modified. The other way is to determine the conse-
quences of the modification(s) [11]. Change impact can be direct,
modules are affected because of a specific relationship to a module
that will change, or indirect, a module is affected because of depen-
dencies on the module that changes [26].

In terms of software architectures, determining the impact of a
change can be challenging. Architecture modules can contain other
modules, packages, and classes. Assessing change impact when
architectures are affected involves highly complex structures and
external factors not present when assessing impact from a strictly
source code level. A developer must determine the underlying
mechanisms of change and answer questions such as where (loca-
tion of change), when (temporal properties), what (system proper-
ties), and how (change support) at the system and organization
level [36]. Developers must also assess the abstraction level where
the change takes place (i.e., module, subsystem, design unit, archi-
tecture, and systems of systems) [102].

Architecture impact analysis can be performed by scaling up
low-level, source analyses [134]. Program traces and module
dependency techniques are performed to determine which mod-
ules must be changed along with the target module. Impact analy-
sis can also be performed dynamically by focusing on the module
that executes after the most recently changed module [10]. Archi-
tectural impact analysis can also be performed statistically by
determining the probabilities that a module change is required gi-
ven that another module has changed [5].

In assessing architecture impact, subjective ratings based on
developer experience are often used. For example, change impact
can be cosmetic (trivial), local or global (significant impact) [97].
The influence of a requirement change can be weak, average, or
Table 5
SACCS exclusion criteria.

Steps Title

1 Subset of another attribute
2 Not directly relevant to focus on software architecture
3 Not relevant to scope and goals of study
4 No extensive literature backing
5 Proposed outcome of study
strong [112]. Finally, the impact of a change to various classes
can be characterized as low, medium, high or no impact [111].

Lassing et al. created a subjective impact scale in their study of
architecture flexibility. The scale included four levels:

1. No impact.
2. Affects one component.
3. Affects several components.
4. Affects the software architecture.

They also pointed out the significance of analyzing changes to
the micro architecture (internal components) and changes to the
macro-architecture (external components) [79,80].

In summary, the results for Question 4 show that change impact
analysis at the architecture/design level is subjective and involves
determining which system modules will be affected when making
a change. The subjectiveness of the approach allows developers to
assess the level of impact using ordinal rating systems that require
extensive developer experience to provide accurate results.

4.5. Research Question 5: What types of architecture changes can be
made to common architectural views?

The architecture views used to describe software provide the
architect with a means of explaining the architecture to stakehold-
ers. Each view presents different aspects of the system that fulfill
functional and non-functional requirements. There are many dif-
ferent architectural styles. At a very high-level, architectures are
described in terms of their logical (static) structure and their run-
time (dynamic) structure [58]. The logical views include; depen-
dency relationships, layers, inheritance structure, module
decomposition, and source structure abstractions. The runtime views
include: control flow processing, repository access, concurrent pro-
cesses, component interaction, distributed components, and compo-
nent deployment abstractions [14,45,127].

There are many ways that architecture views can be modified.
Logical changes affect system structure and consist of changes to
systems, subsystems, modules, packages, classes, and relationships.
Class hierarchy changes consist of modifications to inheritance
views. Class signature changes describe alterations to system inter-
faces [48]. Change can be made to UML diagrams where each dia-
gram type will signify the nature of changes made to it: class
diagrams (i.e., add/delete attributes, change attribute, add/delete
method, change method, add/delete relationship, change relation-
ship, add/delete class, and change class), sequence diagrams and
state charts [31]. A more general description includes changes to
entities (i.e., classes and modules), relations and attributes
[141,142]. Other types of architecture changes include: kidnapping,
splitting, and relocating. Kidnapping is moving an entire module
from one subsystem to another. Splitting involves dividing the
functions of a module to two distinct modules. Relocating involves
moving functionality from one module to another [135].

Runtime changes are identified based on changes to processing
entities, the connections between the processes, and connections
between remote components. Changes to components can have
causal dependencies (i.e., behavior in one component causes a
Definition

The attribute is a more specific instance of an attribute that is include in SACCS
The attribute does not directly impact the process of changing the architecture
The attribute focused on characteristics that are outside the scope of this study
The attribute did not have support from more than three sources
The attribute is an output of the characterization rather than an input.

Table 6
Overall impact scale.

Rating Name Description

0 No impact The property will not be affected by the change request
1 Cosmetic impact The property will be minimally effected with only a surface level impact
2 Minor impact The property must be considered when planning the implementation of the change request
3 Substantial impact This property will require considerable attention during the planning, implementation, and validation of the change request
4 Major focus of change This property is one of the primary reasons for the change request in will require extensive

B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51 39
behavior in another component) and ordering dependencies (i.e.,
where a specific ordering relation has to be maintained between
two or more component behaviors). These changes included add-
ing/deleting components, adding new components that refine existing
components, and adding/deleting connections and component bind-
ings [28]. It is important to understand the evolution of architec-
ture components and the communications between them [62].
There are taxonomies that also describe component changes. These
changes included adding, deleting, modifying, or substituting compo-
nents, connectors, ports, and services [9,118,123,125].

4.6. SACCS exclusion criteria

In the previous sections, we identified a large number of poten-
tial attributes for the SACCS. While each attribute has some value,
including them all in the SACCS was not feasible due to the number
of attributes that were available. Therefore, we created the exclu-
sion criteria to systematically decide whether each attribute
should be included. We used the five steps described in Table 5
as a method of filtering out those attributes that should be ex-
cluded from the SACCS.

In summary, there are many ways to reflect a change to the
architecture in the architecture diagrams and in the source struc-
ture. The literature describes many ways to change high-level
architecture components and their interactions. Each element in
an architecture diagram has the potential to be affected by a soft-
ware change. The next section presents the attributes that were
used to create the characterization scheme.

5. Software architecture change characterization scheme
(SACCS)

After reducing the overall set of identified attributes using the
exclusion criteria defined in Table 5, we organized those attributes
into a characterization scheme. The goal of this scheme was to as-
sist developers in making decisions about how to address a change
request.

5.1. Characterization scheme overview

SACCS was designed to capture the effects of changes to archi-
tecture and provide a structured approach for impact analysis. To
use SACCS, a developer characterizes a change request beginning
Fig. 1. General Characterization Shapes Key
with high-level characteristics then progressing to more detailed
characteristics. The high-level characteristics describe the change’s
motivation, type, size, impact on static, impact on dynamic proper-
ties and effect on requirements (functional and non-functional).
The detailed change characteristics identify specific changes that
must be made to the major architectural views. The two-level hier-
archy for SACCS addresses both the context of the change request
and its impact on the software system.

SACCS is organized as a set of characteristics that group to-
gether two or more related attributes. All of the characteristics
and attributes originated in the literature discussed in Section 4.
The remainder of this section discusses the change characteristics
and associated attributes in detail. For each characteristic identi-
fied, the attributes are shown in rectangles in the figure on the left
and listed in the table on the right along with the reference from
which they were drawn. Any attribute that is a subset of an in-
cluded attribute is listed along with the figure. Finally, for com-
pleteness, any attribute that was not included in SACCS is listed
in Table 19 along with an explanation of its exclusion.

5.2. General characteristics

These high-level characteristics are used to describe how a
change affects the system and development environment. In the
following subsections, each characteristic is described in detail.
In the description, the characteristic is listed in italics and the attri-
butes are in bold. In the figure that follows each characteristic, the
shape with the bold outline is the general characteristic. The
shapes outlined with a dashed line are the values (attributes) that
can be selected for each characteristic. Attributes that are shaded
use the Overall Impact Scale (Table 6). Fig. 1 provides an example
of how shapes are used in the scheme.

The Overall Impact Scale (Table 6) is used to determine the ex-
tent of the effect of each shaded attribute include in SACCS. This
scale ranges from a rating of ‘0’ (no impact), meaning the change
will not have an effect on that attribute to ‘4’ (major focus of
change), meaning that the change will drastically affect that attri-
bute [46,80,97,111,112].

5.2.1. Motivation
The first characteristic is the motivation for the change (Table 7).

The change can be motivated by either the need for an enhance-
ment (i.e., to improve the system) or in response to a defect (i.e.,
resulting from an error, fault, or failure) [128]. The relative fre-
quency of defects vs. enhancements will, over time, provide insight
Table 7
Motivation characteristic.

Enhancement [74,128]
Defect [74,128]

40 B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51
into system maintenance. An increase in the relative number of de-
fects over time may suggest that the system quality is declining be-
cause more defects are introduced during the maintenance process
[21].

5.2.2. Source
The source characteristic classifies the origin of the change re-

quest as one of four types (Table 8). First, the resource constraint
attribute indicates that the source is a change in available re-
sources or development environment (e.g., reduction in memory
available, reduction in available communications protocols, or
reduction in budget). Second, a change in a law or government reg-
ulation that affects the software’s domain is classified as law/gov-
ernment regulation. Third, the source could be a change in
organizational policy. Finally, the source could be a stakeholder re-
quest to address changing needs.
Table 10
Developer experience characteristic.

Minimal
[49,92,94,95,110]
Localized
[49,92,94,95,110]
Extensive
[49,92,94,95,110]

Table 11
Category characteristic.

Corrective [2,4,6,19,30,40,50,66,69,90,91,1
Perfective [2,4,6,19,30,40,50,66,69,90,103–
enhansive, anticipative, evolutive, design
Preventative [4,6,19,30,50,66,103–106,119
Adaptive [2,6,19,30,40,50,66,69,90,91,103–

Table 9
Criticality/Importance Characteristic.

Risk [78]
Time [110]
Cost [46,110]
Safety [46]
Requested [94,95,109]

Table 8
Source characteristic.

Resource constraint [94,95]
Law/government regulation
[94,95]
Policy [94,95]
Stakeholder request [94,95,109]
5.2.3. Criticality/importance
The criticality/importance characteristic contains five attributes

that dictate the consequence of making the change (Table 9). Risk
indicates that a change that has a greater than normal risk of fail-
ure or poses external risk to the organization. Time indicates that
the change must be implemented within a shorter than normal
timeframe. The cost attribute indicates that the change has greater
than normal budget/resource constraints. The safety attribute indi-
cates that the change has implications on the safety of its users.
The requested attribute indicates that the change was requested
by a stakeholder, but is not of critical importance to the organiza-
tion or software. If the requested attribute is selected, then none of
the other attributes will be selected. This feature is provided be-
cause not all change requests are of critical importance to the sys-
tem. The developer can use more than one of the other attributes
to indicate the criticality of the change request when the re-
quested attribute is not selected.

5.2.4. Developer experience
The developer experience characteristic (Table 10), provides a

way to assess how well the developer(s) implementing the change
request understand the system architecture [49,92,94,95,110]. The
experience of the software development personnel is important
factor in change difficulty and in effort prediction. A minimal rating
indicates that the developer has little experience with the architec-
ture and the components related to the change. A localized rating
indicates that the developer is experienced with the subset of the
architecture related to the change, but not with the entire architec-
ture. Finally, an extensive rating indicates that the developer is dee-
ply familiar with the entire architecture [49].

5.2.5. Category
The category characteristic (Table 11) classifies the type of

change as perfective, corrective, adaptive or preventative (described
in Section 2). Recording the change category is important for sev-
eral reasons. The frequency of change types can provide developers
with insight about the evolution of the system. For example, Swan-
son indicates that frequent adaptive changes may be a reflection on
system portability. Conversely, frequent perfective changes may
indicate a more mature system where maintainability is improved
[133]. These conclusions may not be true for all systems in all orga-
nizations. But, as a history of changes develops, organization-spe-
cific insights can arise.

5.2.6. Granular effect
The granular effect describes the extent to which the change af-

fects the architecture (Table 12). Functional/module changes affect
user-observable attributes and functions of the system. These
changes are within a single module. Subsystem changes have both
a functional and an architectural impact because they affect user
functions across modules. Purely architectural changes affect only
the architecture and not user-observable functions [108]. Architec-
tural changes, which often take place to satisfy a quality attribute
03,105, 106,119,126,128,133] – subset attributes: intensive evolution
106,119,126,128,133] – Subset attributes: performative, groomative, reductive,

evolution
,128]
106,119,126,128,133] – subset attributes: extensive evolution

Table 14
Features characteristic.

Devices
[18,30,122,124]

B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51 41
or non-functional requirement, are often referred to as refactoring
or restructuring [27]. System of system changes are large-scale
changes that affect interactions and architectural components be-
tween disparate systems.
Data access
[98]
Data transfer
[18,124]
System
interface
[18,124]
User interface
[18,124]
Communication
[18,124]
Computation
5.2.7. Properties
The properties characteristic determines the impact of the

change on the logical and runtime structures (Table 13). A static
change affects logical properties, such as module decomposition,
module dependency, the inheritance structure and other static
properties. A dynamic changes affects how data propagation, the
behavior of distributed components, execution of concurrent pro-
cesses, and other runtime behaviors.
[18,124]
Input/output
[18,124]
5.2.8. Features

The features characteristic (Table 14) determines how the
change request will affect the functional requirements of the sys-
tem. The characteristic identifies impacts on the following areas
of the system [18,22,30,94,105,122,124]:

� devices: hardware devices used by the system;
� data access: receipt of data from external systems/

repositories;
� data transfer: flow of data from system to external systems;
� system interface: software interfaces with external systems;
� user interface: human–computer interaction interfaces;
� communication: protocols used to interface other systems/

data;
� computation: algorithm functions and modification of data;
� input/output: format of information processed by system.

It is expected that the design of a system will determine which
aspects are affected by a change [41]. After analyzing the change
request to determine which of the above system features will be
impacted by the change, the architecture modules that handle
those system features must be identified during change analysis.
This analysis helps developers and testers focus their effort in the
right place.
Table 12
Granular effect characteristic.

Functional/module
[98,108,134]
Subsystem [102] – subset
attributes: micro-architecture
changes
Architectural [55,67,101,140]
– subset attributes:
restructuring, refactoring,
architecturally significant
change, structural changes,
macro-architecture changes
System of systems [102]

Table 13
Properties characteristic.

Static [52,58,60,143]
Dynamic [52,58,60]
5.2.9. Quality attributes
The quality attributes (Table 15) are areas that are impacted

when the change addresses a software quality attribute. The list in-
cludes the six quality from ISO Standard 9126 (i.e., usability, reli-
ability, functionality, portability, maintainability, and efficiency)
plus additional attributes identified by Krutchen (availability and
scalability) [3,75]. Evaluation of the architecture is critical when
addressing a change that focuses on a non-functional (quality)
attribute because the architecture may determine whether the goal
can be met. [23].

5.2.10. Logical
The logical characteristic (Table 16) includes the general archi-

tectural features that can be used to describe the static framework
of most object-oriented software. These characteristics include:
dependency relationships, layers, inheritance structure, module
decomposition, and source structure. Once a logical area is identified
as being important (based on its rating on the Overall Impact
Scale), the change should be characterized in more detail using
the related Specific Characterization framework, which is described
in Section 5.3.

5.2.11. Runtime
The runtime characteristic (Table 17) lists the dynamic architec-

ture attributes common to most object-oriented architectures.
Table 15
Quality attributes.

Usability [3]
Reliability [3]
Functionality [3]
Portability [3]
Availability [75]
Maintainability
[3]
Scalability [75]
Efficiency [3] –
subset attributes:
performance
change

Table 16
Logical characteristic.

Dependency relationship
[14,45,127]
Layers [14,45,127]
Module decomposition
[14,45,127] – subset
attributes: coupling between
modules
Source structure [14,45,127]
– subset attributes: header
file changes
Inheritance structure
[14,45,127] – subset
attributes: inheritance
deviation

Table 17
Runtime characteristic.

Control flow processing
[14,45,127]
Concurrent processes
[14,45,127]
Distributed components
[14,45,127]
Repository access
[14,45,127]
Component interaction
[14,45,127]
Component deployment
[14,45,127]

42 B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51
These characteristics include: control flow processing, repository ac-
cess, concurrent processes, component interaction, distributed compo-
nents, and component deployment. Similar to the logical
characteristic, once a runtime area is identified as being important,
the change should be characterized in more detail using the related
characteristic from the Specific Characterization framework.

5.2.12. Complete general characterization scheme
Using all of the general characteristics described in the previous

subsections, we developed the overall characterization scheme
shown in Fig. 2. In this figure, the arrows dictate the order of char-
acterization that should be followed. The specific characterization,
which allows the developer to provide more detail about the effect
of the change on the logical and runtimes structures, is described
in the next section.

5.3. Specific characterization

The purpose of these characteristics is to allow the developer to
analyze the architecture in more detail to determine how to imple-
ment the change. The Specific Impact Scale found in Table 18 de-
scribes the magnitude of the changes that can be made to the
various architectural structures.

The logical and runtime characteristics focus on static and dy-
namic relationships among architectural elements. The goal of
the specific characterization scheme is to indicate, in a comprehen-
sive manner, which portions of an object-oriented architecture are
affected when implementing a change [9,28,31,62,118,123,
141,142].

The logical and runtime characteristics selected during the Gen-
eral Characteristics analysis are further elaborated for the Specific
Characteristics. For Fig. 3 and 4, the developer would select values
from the Specific Impact Scale that correspond to the level of
change necessary represented by the oval shapes in the figure.
For example, if a change request requires changes to a component
within a layer and the addition of a new layer, the developer would
select a value from the Specific Impact Scale for the ‘(Add, Remove,
Modify) Layer’ and ‘(Add, Remove, Modify) Layer Module’ list of
change actions for the ‘Layers’ view.
5.3.1. Logical views
The logical characteristics describe the types of changes that can

be made to elements of any view that exhibits those characteris-
tics. Fig. 3 provides a visual overview of these characteristics along
with the types of changes that can be made. These changes include
adding, modifying, and removing elements and/or the connections
between them.

The Dependency Relationships view describes the system mod-
ules and the relations between them. The Layers view abstracts
how the system is divided into hierarchical layers. The Inheritance
Structure view depicts the relationship between the modules in
terms of their parent–child–sibling relationships. The Module
Decomposition view is the basic view of the system at varying levels
of abstraction. The Source Structure view provides the representa-
tion of the location of the source code on the folder.
5.3.2. Runtime views
The runtime characteristics describe changes that can be made

to portions of the architecture that describe the dynamic aspects
of the software. These views contain executable components and
connections between those components. The types of changes that
can be made to different parts of the architecture are shown in
Fig. 4.

The Control Flow Processing view shows how system processes
interact through a pipe-and-filter representation of the architec-
ture. The Repository Access view shows the system in terms of its
database and accessor relationship. The Concurrent Processes view
shows the way processes interact as system threads while the
Component Interaction view shows processes interaction through
the sharing of information through a publish-and-subscribe archi-
tecture view. The Distributed Components view shows how remote
processes interact and the Component Deployment view shows the
components and their location on system hardware.
5.4. Excluded attributes

For the sake of completeness, Table 19 lists the characteristics
that were identified in the literature but not included in the SACCS.
The attributes are organized relative to the particular step de-
scribed in Table 5 that resulted in their exclusion.
6. Research implications and conclusions

This section summarizes the contributions of this review for the
software engineering research community. This systematic review
of software change provided comprehensive insight into the archi-
tecture change process. Several questions were answered regard-
ing changes that affect software architectures. The answers to
these questions were derived from peer-reviewed literature
sources. These answers also provided the basis for the creation of

Fig. 2. General Characteristics

B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51 43
SACCS, a framework for assessing change characteristics and their
impact to a system.

The systematic review results contained attributes extracted
from change classification schemes, change impact analysis tech-
niques, and architectural styles that must be updated to reflect sys-
tem changes. The results provided a rich set of data that was used
to create a comprehensive change characterization scheme. This
scheme differs from change classification schemes because it does
not lump change requests into a particular class, but provides a
way to characterize the change’s impact with respect to number

44 B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51
of important characteristics based on the experience of the devel-
oper. SACCS was created by examining the results of the systematic
literature review.

The strengths of this research approach are derived from the
systematic process used to perform this initial review. The protocol
created prior to conducting the review ensures the completeness of
the review. Multiple data sources were used to extract relevant pa-
pers. The data sources included relevant journals, conference pro-
ceedings, and technical reports. The data extraction form created to
obtain consistent data from each of the primary studies, ensured
that all relevant information was received from each study.
Table 18
Specific impact scale [79,80].

Rating Name

0 No impact
1 Small impact – single module/component
2 Small impact – multiple modules/components
3 Significant impact – single module/component
4 Significant impact – multiple modules/components

Fig. 3. Logica

Fig. 4. Runtim
A major goal for this research is to provide support for system
developers and maintainers to assess the potential impact of a pro-
posed change and decide whether it is feasible to implement the
change. In cases where the change is crucial to the system, the
scheme will help generate consensus on how to approach change
implementation and provide an indication of the difficulty. SACCS
has been designed as a decision tree where choices made for the
high-level characteristics affect decisions that can be made at the
more detailed level. The specifics of the relationships among the
attributes of the scheme will evolve as additional constraints and
dependencies are identified. The characterizations are made using
an electronic form. A developer will use this form to record his or
her selections individually along with a rationale for the selections.
The developer’s characterization of the change can then be used to
facilitate a discussion among other developers about the proposed
impact. The goal is to determine whether the change can be made,
given development constraints and architectural complexity.

This systematic review serves a starting point and provides the
preliminary framework for a model of application-dependent
change difficulty prediction for a change decision support system.
The decision support system will take a change request as input
l Views

e Views

Table 19
Excluded characteristics/attributes.

Steps Title Attributes

2 Not directly relevant to focus on
software architecture

documentation, function name change, parameter change, orderings change, [fields, methods, classes] modification,
variable scope change, modifier change, attribute change, variable change, semantic change

3 Not relevant to scope and goals of study prototype change, coupling between classes, steady-state development, pending changes, replacement changes,
slowly developing changes, substitution change, configuration file changes, temporal change properties, design unit
change, evolutionary couplings, [kidnapping, splitting, relocating] modules, causal dependency change, ordering
dependency change

4 No extensive literature backing evaluative, consultive, training, updating reformative, retrenchment, retrieving, prettyprinting, user support change,
duplicated code change, reposition a code fragment, temporarily adding code fragment, superposition change, direct
impact changes and indirect impact changes

5 Proposed outcome of study coupling understandability, coupling complexity, change process improvement, feedback loop, determining change
consequences, statistical change impact

Table A1
Search strings.

String Name Search string Review
question
(s)

Purpose

1 Software change
classification

(software Or application Or system Or module Or component) <And> (change
Or refinement Or modification Or revision Or evolution Or modify) <And>
(classification Or categorization Or taxonomy Or framework) <And> (scheme
Or notation Or chart Or strategy Or schema Or representation Or pattern)
<And> software engineering Or software maintenance

Q1 To identify the current research being
performed in the area of software change
classification

2 Software
architecture
change

(software Or application Or system Or module Or component) <And>
(architecture Or high-level design Or conceptual design Or abstract design Or
architectural) <And> (change Or refinement Or modification Or revision Or
evolution Or modify) <And> (software architecture Or software
maintenance Or software change)

Q2, Q3, Q5 To determine how software architectures
are affected when a software system is
changed

3 Software change
impact analysis

(software Or application Or system Or module) <And> (change Or refinement
Or modification Or revision Or evolution Or modify) <And> (impact Or effect)
<And> (analysis Or study Or examination) <And> (software engineering Or
software maintenance Or software change Or impact analysis)

Q4 To identify and measure change impact
related to software systems

B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51 45
and output predictions about what is expected. The ideal imple-
mentation of the decision support system is described below.

1. Stakeholder issues change request.
2. Developer formalizes request using template.
3. Developer isolates and characterizes change using SACCS.
4. Proposed changes discussed between project group.
5. Planned implementation recorded.
6. System compares current change to set of previous similar

changes.
7. System provides difficulty prediction and analysis.
8. Actual change detail and SACCS characteristics recorded for

future use.

The type of questions that the output of the decision support
system will provide include: What amount of relative effort is re-
quired to implement the change? After the change is isolated to
a module, what other historically coupled modules are likely to
be affected? Will the change result in a more complex architec-
ture? Will the change violate any architecture constraints? Will
the changes be made to historically effort-intensive modules?
Should a part of the system with a high handling rate be refac-
tored? Answers to questions such as these will assist a developer
to make quality decisions concerning the software project from rel-
evant, application-dependent data.

The results of this research provide a piece of the framework
for a data driven change support model that analyzes relevant
change data to provide a developer with the tools needed to
maintain today’s complex software systems. This unique ap-
proach that will blend quantitative data analysis and qualitative
characterizations that benefit from developer experience is key
to this larger system.
SACCS will be refined based upon further analysis and assess-
ment in empirical studies using the scheme. Historical changes
that include implementation detail that can be used for validation
will be characterized using SACCS. This activity will allow us to
identify trends about change characteristics in a particular system
and recommend best-practices for future changes with similar
characteristics.

Change characterization can be a useful tool in determining the
impact of a change. After further research, we envision that this
characterization mechanism will be incorporated into an organiza-
tion’s change implementation process. An additional step would be
added after receiving a change request to allow the developers to
characterize that change request.

Being able to accurately identify changes that will affect soft-
ware architecture will aid developers in understanding the impact
of the change and help them make changes without degrading the
quality of the system. We have not found any other change frame-
work that takes a comprehensive approach to change understand-
ing and analysis.

Acknowledgements

We would like to thank Dr. Edward Allen for reviewing this
document. We would also like to thank the Empirical Software
Engineering Research Group at Mississippi State University for
their help and support throughout this research. This research is
funded by NSF Grant CCF-0438923.

Appendix A

Search strings were created to extract data from each database.
The search strings included terms from each of the research

46 B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51
questions and meaningful synonyms and alternate spellings. Table
A1 lists the three search strings used to conduct this review, the
research question that each string addresses, and the purpose for
the search.
Appendix B

This appendix provides a list of all the papers (130) that were
included in the review. There were references that were in-
cluded in the review (i.e., papers whose titles, abstract, content,
and quality fit), but they were not cited in the paper. The cita-
tions were left out of the paper because some papers provided
redundant information to those that were already cited and did
not add anything to the review. The references highlighted with
a ‘*’ are included in the reference list for the main paper.

[1]* W. Abdelmoez, M. Shereshevsky, R. Gunnalan, H.H. Ammar, Y. Bo, S. Bog-
azzi, M. Korkmaz, A. Mili, Quantifying Software Architectures: An Analysis
of Change Propagation Probabilities, in: The 3rd ACS/IEEE International
Conference on Computer Systems and Applications, 2005, pp. 124–131.

[2]* S. Ajila, Software Maintenance: An Approach to Impact Analysis of Objects
Change, Software – Practice and Experience, 25(10) (1995) 1155–1181.

[3] V. Ambriola, A. Kmiecik, Architectural Transformations, in: Proceedings of
the 14th International Conference on Software Engineering and Knowl-
edge Engineering, Ischia, Italy, ACM Press, 2002, pp. 275–278.

[4]* G. Antoniol, G. Canfora, A. De Lucia, Estimating the size of changes for evolv-
ing object-oriented systems: a case study, in: Proceedings of the Sixth Inter-
national Software Metrics Symposium, Boca Raton, FL, 1999, pp. 250–258.

[5]* M. Aoyama, Evolutionary Patterns of Design and Design Patterns, in: Pro-
ceedings of the International Symposium on Principles of Software Evolu-
tion, 2000, pp. 110–116.

[6]* M. Aoyama, Metrics and Analysis of Software Architecture Evolution with
Discontinuity, in: Proceedings of the International Workshop on Principles
of Software Evolution, Orlando, FL, ACM Press, 2002, pp. 103–107.

[7]* T. Apiwattanapong, A. Orso, M.J. Harrold, Efficient and precise dynamic im-
pact analysis using execute-after sequences, in: Proceedings of the 27th
International Conference on Software Engineering, St. Louis, MO, 2005,
pp. 432–441.

[8]* R.S. Arnold, S.A. Bohner, Impact analysis-towards a framework for compar-
ison, in: Proceeding of the Conference on Software Maintenance, Montreal,
Que., 1993, pp. 292–301.

[9]* R.D. Banker, S.M. Datar, C.F. Kemerer, D. Zweig, Software complexity and
maintenance costs, Communications of the ACM, 36(11) (1993) 81–94.

[10]* J. Baragry, K. Reed, Why we need a different view of software architecture,
in: Proceedings of the Working IEEE/IFIP Conference on Software Architec-
ture, Amsterdam, 2001, pp. 125–134.

[11]* O. Barais, L. Duchien, A.F. Le Meur, A Framework to Specify Incremental
Software Architecture Transformations, in: 31st EUROMICRO Conference
on Software Engineering and Advanced Applications 2005, Porto, Portugal,
pp. 62–69.

[12]* E. Barry, C.F. Kemerer, S.A. Slaughter, On the Uniformity of Software Evo-
lution Patterns, in: Proceedings of the International Conference on Soft-
ware Engineering, Portland, OR, 2003, pp. 106–113.

[13]* E. Barry, S. Slaughter, C.F. Kemerer, An empirical analysis of software evo-
lution profiles and outcomes, in: Proceeding of the 20th International Con-
ference on Information Systems, Charlotte, NC, Association for
Information Systems, 1999, pp. 453–458.

[14]* V. Basili, L. Briand, S. Condon, Y. Kim, W. Melo, J. Valen, Understanding and
predicting the process of software maintenance releases, in: Proceedings
of the 18th International Conference on Software Engineering, Berlin, Ger-
many, 1996, pp. 464–474.

[15]* V. Basili, B.T. Perricone, Software errors and complexity: an empirical
investigation, Communications of the ACM, 27 (1) (1984) 42–52.

[16]* V. Basili, D. Weiss, Evaluation of a software requirements document by
analysis of change data, in: Proceedings of the 5th International Confer-
ence on Software Engineering, IEEE Press, San Diego, CA, 1981, pp. 314–
323.

[17]* P. Bengtsson, J. Bosch, Architecture level prediction of software mainte-
nance, in: Proceedings of 3rd EuroMicro Conference on Maintenance
and Reengineering (CSMR’99), Amsterdam, Netherlands, 1999, pp. 139–
147.

[18]* S.A. Bohner, Impact analysis in the software change process: a year 2000
perspective, in: Proceedings of the International Conference on Software
Maintenance, Monterey, CA, 1996, pp. 42–51.

[19]* S.A. Bohner, Software change impacts-an evolving perspective, in: Pro-
ceedings of the International Conference on Software Maintenance, Mon-
treal, Quebec, Canada, 2002, pp. 263–272.
[20]* P. Bose, Change analysis in an architectural model: a design rationale
based approach, in: Proceedings of the Third International Workshop on
Software Architecture, ACM Press, Orlando, FL, 1998, pp. 5–8.

[21]* L. Briand, V. Basili, A classification procedure for the effective management
of changes during the maintenance process, in: Proceeding of the Confer-
ence on Software Maintenance, Orlando, FL, 1992, pp. 328–336.

[22]* L. Briand, Y. Labiche, L. O’sullivan, Impact analysis and change manage-
ment of Uml models, in: Proceedings of the International Conference on
Software Maintenance, Amsterdam, The Netherlands, 2003, pp. 256–265.

[23]* L. Briand, Y. Labiche, L. O’sullivan, M.M. Sûwka, Automated impact analy-
sis of Uml models, Journal of Systems and Software, 79(3) (2006) 339–
352.

[24]* L. Briand, S. Morasca, V. Basili, Measuring and assessing maintainability at
the end of high level design, in: Proceedings of the Conference on Software
Maintenance, Montreal, Que., Canada, 1993, pp. 88–97.

[25]* L. Briand, J. Wust, H. Lounis, Using coupling measurement for impact anal-
ysis in object-oriented systems, in: Proceedings of the Conference on Soft-
ware Maintenance, Oxford, 1999, pp. 475–482.

[26]* J. Buckley, T. Mens, M. Zenger, A. Rashid, G. Kniesel, Towards a taxonomy
of software change, Journal of Software Maintenance and Evolution: Re-
search and Practice, 17(5) (2005) 309–332.

[27]* A. Capiluppi, A.E. Faria, J.F. Ramil, Exploring the relationship between
cumulative change and complexity in an open source system, in: Ninth
European Conference on Software Maintenance and Reengineering, King’s
College, London, 2005, pp. 21–29.

[28]* A. Capiluppi, J. Fernandez-Ramil, J. Higman, H.C. Sharp, N. Smith, An empirical
study of the evolution of an agile-developed software system, in: 29th Inter-
national Conference on Software Engineering, Minneapolis, MN, 2007, pp.
511–518.

[29]* S.J. Carriere, R. Kazman, S.G. Woods, Assessing and maintaining architec-
tural quality, in: Proceedings of the Third European Conference on Soft-
ware Maintenance and Reengineering, Amsterdam, 1999, pp. 22–30.

[30] N. Chapin, Software maintenance types-a fresh view, in: Proceedings of the
International Conference on Software Maintenance, 2000, pp. 247–252.

[31]* N. Chapin, J.E. Hale, K.M. Khan, J.F. Ramil, W.-G. Tan, Types of software
evolution and software maintenance, Journal of Software Maintenance:
Research and Practice 13(1) (2001) pp. 3–30.

[32]* M.A. Chaumun, H. Kabaili, R.K. Keller, F. Lustman, A change impact model
for changeability assessment in object-oriented software systems, in: Pro-
ceedings of the Third European Conference on Software Maintenance and
Reengineering, 1999, pp. 130–138.

[33]* M.A. Chaumun, H. Kabaili, R.K. Keller, F. Lustman, A change impact model
for changeability assessment in object-oriented software systems, Science
of Computer Programming 45(2) (2002) 155–177.

[34]* O.C. Chesley, X. Ren, B.G. Ryder, Crisp: a debugging tool for Java pro-
grams, in: Proceedings of the International Conference on Software
Maintenance, 2005, pp. 401–410.

[35]* P. Clarke, B. Malloy, P. Gibson, Using a taxonomy tool to identify changes
in Oo software, in: Proceedings of the Seventh European Conference on
Software Maintenance and Reengineering, 2003, pp. 213–222.

[36] R. Conradi, M.N. Nguyen, A.I. Wang, Planning support to software process
evolution, International Journal of Software Engineering and Knowledge
Engineering, 10(1) (2000) 31–47.

[37]* S. Cook, R. Harrison, M.M. Lehman, P. Wernick, Evolution in software sys-
tems: foundations of the spe classification scheme, Journal of Software
Maintenance and Evolution: Research and Practice, 18(1) (2005) 1–35.

[38]* S. Cook, R. Harrison, P. Wernick, A simulation model of self-organising
evolvability in software systems, in: IEEE International Workshop on Soft-
ware Evolvability, 2005, pp. 17–22.

[39]* R.T. Crocker, A. Von Mayrhauser, Maintenance support needs for object-
oriented software, in: Proceedings of the Seventeenth Annual Interna-
tional Computer Software and Applications Conference, 1993, Phoenix,
AZ, pp. 63–69.

[40]* S. Dekleva, Delphi study of software maintenance problems, in: Proceed-
ings of the Conference on Software Maintenance, 1992, Orlando, FL, pp.
10–17.

[41]* S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, A. Mockus, Does code decay?
assessing the evidence from change management data, IEEE Transactions
on Software Engineering, 27(1) (2001) 1–12.

[42]* S.G. Eick, T.L. Graves, A.F. Karr, A. Mockus, P. Schuster, Visualizing software
changes, Software Engineering, IEEE Transactions on, 28(4) (2002) 396–
412.

[43] K. Falkner, H. Detmold, D. Howard, D.S. Munro, R. Morrison, S. Norcross,
Unifying static and dynamic approaches to evolution through the compli-
ant systems architecture, in: Proceedings of the 37th Annual Hawaii Inter-
national Conference on System Sciences, 2004, Big Island, HI, pp. 268.

[44]* T. Feng, J.I. Maletic, Applying dynamic change impact analysis in compo-
nent-based architecture design, in: Seventh ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking, and Parallel/
Distributed Computing, 2006, pp. 43–48.

B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51 47
[45]* R. Fiutem, P. Tonella, G. Antoniol, E. Merlo, A cliche-based environment to
support architectural reverse engineering, in Proceedings of the Third
Working Conference on Reverse Engineering, 1996, pp. 319–328.

[46]* B. Fluri, H.C. Gall, Classifying change types for qualifying change couplings,
in: Proceedings of the 14th IEEE Conference on Program Comprehension,
2006, Athens, Greece, pp. 35–45.

[47]* E. Fuentetaja, D.J. Bagert, Software evolution from a time-series perspec-
tive, in: Proceedings of the International Conference on Software Mainte-
nance, 2002, pp. 226–229.

[48]* H. Gall, M. Jazayeri, R.R. Klosch, G. Trausmuth, Software evolution obser-
vations based on product release history, in: Proceedings of the Interna-
tional Conference on Software Maintenance, 1997, pp. 160–166.

[49]* J. Grundy, J. Hosking, High-level static and dynamic visualisation of soft-
ware architectures, in: Proceedings of the 2000 IEEE International Sympo-
sium on Visual Languages, 2000, Seattle, WA, pp. 5–12.

[50]* A. Hac, Software renovation for large software applications, in: IEEE Re-
gion 10 International Conference (TENCON ‘92), 1992, Melbourne, Austra-
lia, pp. 307–311.

[51]* G.T. Heineman, A. Mehtra, Architectural evolution of legacy systems, in:
Proceedings of the 23rd Annual International Computer Software and
Applications Conference, 1999, Phoenix, AZ, pp. 4–12.

[52]* I. Herraiz, G. Robles, J.M. Gonzalez-Barahona, A. Capiluppi, J.F. Ramil, Com-
parison between slocs and number of files as size metrics for software
evolution analysis, in: Proceedings of the 10th European Conference on
Software Maintenance and Reengineering 2006, 8pp.

[53]* D.S. Hinley, Software evolution management: a process-oriented perspec-
tive, Information and Software Technology 38(11) (1996) 723–730.

[54]* L. Hochstein, M. Lindvall, Combating architectural degeneration: a survey,
Information and Software Technology, 47(10) (2005) 643–656.

[55]* P. Hsia, A. Gupta, C. Kung, J. Peng, S. Liu, A study on the effect of architec-
ture on maintainability of object-oriented systems, in: Proceedings of the
International Conference on Software Maintenance, 1995, pp. 4–11.

[56]* I. Ivkovic, K. Kontogiannis, A framework for software architecture refactor-
ing using model transformations and semantic annotations, in: Proceed-
ings of the Conference on Software Maintenance and Reengineering,
2006, pp. 135–144.

[57] M. Jørgensen, An empirical study of software maintenance tasks, Journal
of Software Maintenance: Research and Practice, 7(1) (1995) 27–48.

[58]* C.F. Kemerer, S. Slaughter, An empirical approach to studying software
evolution, IEEE Transactions on Software Engineering, 25(4) (1999)
493–503.

[59]* S. Kim, E.J. Whitehead, J. Bevan, Analysis of signature change patterns, in:
Proceedings of the 2005 International Workshop on Mining Software
Repositories, 2005, St. Louis, MO, ACM Press, pp. 1–5.

[60]* S. Kim, E.J. Whitehead, Y. Zhang, Classifying software changes: clean or
buggy? IEEE Transactions on Software Engineering, 34(2) (2008) 181–
196.

[61]* B.A. Kitchenham, G.H. Travassos, A.V. Mayrhauser, F. Niessink, N.F. Schne-
idewind, J. Singer, S. Takada, R. Vehvilainen, H. Yang, Towards an ontology
of software maintenance, Journal of Software Maintenance: Research and
Practice, 11(6) (1999) 365–389.

[62]* P. Kruchten, Architectural Blueprints—the ‘‘4 + 1 view model of software
architecture, IEEE Software, 12(6) (1995) 42–50.

[63]* D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, C. Chen, Change impact
identification in object oriented software maintenance, in: Proceedings
of the International Conference on Software Maintenance, 1994, Victoria,
BC, pp. 202–211.

[64]* W. Lam, V. Shankararaman, Managing change in software development
using a process improvement approach, in: Proceedings of the 24th An-
nual Euromicro Conference, 1998, Vasteras, pp. 779–786.

[65]* W. Lam, V. Shankararaman, Requirements change: a dissection of manage-
ment issues, in: Proceedings of the 25th EuroMicro Conference, 1999, Mi-
lan, Italy, pp. 244–251.

[66]* N. Lassing, D. Rijsenbrij, H. Van Vliet, Flexibility of the combad architec-
ture, in: Proceedings of the First Working IFIP Conference on Software
Architecture, 1999, pp. 357–368.

[67]* N. Lassing, D. Rijsenbrij, H. Van Vliet, Towards a broader view on software
architecture analysis of flexibility, in: Proceedings of the Sixth Asia Pacific
Conference on Software Engineering, 1999, pp. 238–245.

[68]* Y. Lee, J. Yang, K.H. Chang, Metrics and evolution in open source software,
in: Seventh International Conference on Quality Software, 2007, pp. 191–
197.

[69]* M.M. Lehman, Programs, life cycles, and laws of software evolution, Pro-
ceedings of the IEEE, 68(9) (1980) 1060–1076.

[70]* M.M. Lehman, Feedback, evolution and software technology, in: Proceed-
ings of the 10th International Process Support of Software Product Lines
Software Process Workshop, 1996, pp. 101–103.

[71]* M.M. Lehman, D.E. Perry, J.F. Ramil, Implications of evolution metrics on
software maintenance, in: Proceedings of the International Conference
on Software Maintenance, 1998, Bethesda, MD, pp. 208–217.
[72]* M.M. Lehman, D.E. Perry, J.F. Ramil, On evidence supporting the feast
hypothesis and the laws of software evolution, in: Proceedings of the Fifth
International Software Metrics Symposium, 1998, pp. 84–88.

[73]* M.M. Lehman, J.F. Ramil, Towards a theory of software evolution –and its
practical impact, in: Proceedings of the International Symposium on Prin-
ciples of Software Evolution, 2000, pp. 2–1.

[74]* M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, W.M. Turski, metrics and
laws of software evolution-the nineties view, in: Proceedings of the Fourth
International Software Metrics Symposium, 1997, pp. 20–32.

[75]* I.H. Lin, D.A. Gustafson, Classifying software maintenance, in: Proceedings
of the Conference on Software Maintenance, 1988, Scottsdale, AZ, pp. 241–
247.

[76] M. Lindvall, Monitoring and measuring the change-prediction process at
different granularity levels: an empirical study, Software Process:
Improvement and Practice, 4(1) (1998) 3–10.

[77]* M. Lindvall, K. Sandahl, How well do experienced software developers pre-
dict software change? Journal of Systems and Software, 43(1) (1998) 19–27.

[78]* M. Lindvall, R. Tesoriero, P. Costa, Avoiding architectural degeneration: an
evaluation process for software architecture, in: Proceedings of the Eighth
IEEE Symposium on Software Metrics, 2002, pp. 77–86.

[79] X. Liu, Q. Wang, Study on application of a quantitative evaluation ap-
proach for software architecture adaptability, in: Proceedings of the Fifth
International Conference on Quality Software 2005, Melbourne, Austra-
lia, pp. 265–272.

[80]* N.H. Madhavji, The prism model of changes, in: Proceedings of the 13th
International Conference on Software Engineering 1991, Austin, TX, pp.
166–177.

[81]* N.H. Madhavji, Environment evolution: the prism model of changes, IEEE
Transactions on Software Engineering, 18(5) (1992) 380–392.

[82]* J.F. Maranzano, S.A. Rozsypal, G.H. Zimmerman, G.W. Warnken, P.E. Wirth,
D.M. Weiss, Architecture reviews: practice and experience, IEEE Software,
22(2) (2005) 34–43.

[83]* P.J. Mayhew, C.J. Worsley, P.A. Dearnley, Control of software prototyping
process: change classification approach, Information and Software Tech-
nology, 31(2) (1989) 59–66.

[84]* D.S. Mccrickard, G.D. Abowd, Assessing the impact of changes at the archi-
tectural level: a case study on graphical debuggers, in: Proceedings of the
International Conference on Software Maintenance 1996, Monterey, CA,
pp. 59–67.

[85]* T. Mens, J. Buckley, M. Zenger, A. Rashid, Towards a taxonomy of software
evolution, in: Proceedings of the International Workshop on Unantici-
pated Software Evolution, 2003, Warsaw, Poland, pp. 1–18.

[86] T. Mens, T. Tourwe, A survey of software refactoring, IEEE Transactions on
Software Engineering, 30(2) (2004) 126–139.

[87]* R. Mittermeir, Software evolution: let’s sharpen the terminology before
sharpening (out-of-scope) tools, in: Proceedings of the 4th International
Workshop on Principles of Software Evolution, 2001, Vienna, Austria,
ACM Press, pp. 114–121.

[88]* A. Mockus, L.G. Votta, Identifying reasons for software changes using his-
toric databases, in: Proceedings of the International Conference on Soft-
ware Maintenance, 2000, San Jose, CA, pp. 120–130.

[89]* A. Mockus, D. Weiss, Predicting risk of software changes, Bell Labs Techni-
cal Journal, 5(2) (2000) 169–180.

[90]* P. Mohagheghi, R. Conradi, An empirical study of software change: origin,
acceptance rate, and functionality vs. quality attributes, in: Proceedings of
the 2004 International Symposium on Empirical Software Engineering (IS-
ESE ‘04), 2004, pp. 7–16.

[91]* V. Nanda, N.H. Madhavji, The impact of environmental evolution on
requirements changes, in: Proceedings of the International Conference
on Software Maintenance, 2002, pp. 452–461.

[92]* J. Nedstam, E.A. Karlsson, M. Host, The architectural change process, in:
Proceedings of the 2004 International Symposium on Empirical Software
Engineering (ISESE ‘04), 2004, pp. 27–36.

[93]* M.N. Nguyen, R. Conradi, Classification of meta-processes and their mod-
els, in: Proceedings of the Third International Conference on the Software
Process 1994, pp. 167–175.

[94]* N. Nurmuliani, D. Zowghi, S.P. Williams, Using card sorting technique to
classify requirements change, in: Proceedings of the 12th IEEE Interna-
tional Requirements Engineering Conference, 2004, pp. 240–248.

[95]* J.S. O’neal, D.L. Carver, Analyzing the impact of changing requirements, in:
Proceedings of the International Conference on Software Maintenance,
2001, Florence, pp. 190–195.

[96]* C. O’reilly, P. Morrow, D. Bustard, Lightweight prevention of architectural
erosion, in: Proceedings of the Sixth International Workshop on Principles
of Software Evolution, 2003, Helsinki, Finland, pp. 59–64.

[97]* D.L. Parnas, Software aging, in: Proceedings of the 16th International Con-
ference on Software Engineering, 1994, Sorrento, Italy, pp. 279–287.

[98]* N. Phillips, S. Black, Distinguishing between learning, growth and evolu-
tion, in: IEEE International Workshop on Software Evolvability, 2005,
pp. 49–52.

48 B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51
[99]* D. Port, H. Liguo, Strategic architectural flexibility, in: Proceedings of the
International Conference on Software Maintenance 2003, Amsterdam,
The Netherlands, pp. 389–396.

[100]* A. Postma, P. America, J.G. Wijnstra, Component replacement in a
long-living architecture: the 3rdba approach, in: Fourth Working
IEEE/IFIP Conference on Software Architecture (WICSA ‘04), 2004,
pp. 89–98.

[101]* J.S. Poulin, Evolution of a software architecture for management informa-
tion systems, in: Joint Proceedings of the Second International Software
Architecture Workshop and International Workshop on Multiple Per-
spectives in Software Development 1996, San Francisco, CA, ACM Press,
pp. 134–137.

[102]* R. Purushothaman, D.E. Perry, Toward understanding the rhetoric of
small source code changes, IEEE Transactions on Software Engineering,
31 (6) (2005) 511–526.

[103] V. Rajlich, P. Gosavi, Incremental change in object-oriented programming,
IEEE Software, 21(4) (2004) 62–69.

[104]* J.F. Ramil, Laws of software evolution and their empirical support, in:
Proceedings of the International Conference on Software Maintenance,
2002, pp. 71–71.

[105]* J. Ratzinger, M. Fischer, H. Gall, Improving evolvability through refactor-
ing, in: Proceedings of the 2005 International Workshop on Mining Soft-
ware Repositories, 2005, St. Louis, MO, ACM Press, pp. 1–5.

[106]* X. Ren, F. Shah, F. Tip, B.G. Ryder, O. Chesley, Chianti: a tool for change
impact analysis of Java programs, in: Proceedings of the 19th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications 2004, Vancouver, BC, Canada, ACM Press,
pp. 432–448.

[107]* J.E. Robbins, D.M. Hilbert, D.F. Redmiles, Using critics to analyze evolving
architectures, in: Joint Proceedings of the Second International Software
Architecture Workshop and International Workshop on Multiple Per-
spectives in Software Development 1996, San Francisco, CA, ACM Press,
pp. 90–93.

[108]* H. Rombach, B. Ulery, J. Valett, Toward full life cycle control: adding
maintenance measurement to the sel, Journal of Systems and Software,
18(2) (1992) 125–135.

[109]* N. Sadou, D. Tamzalit, M. Oussalah, A unified approach for software
architecture evolution at different abstraction levels, in: Proceedings of
the 2005 Eighth International Workshop on Principles of Software Evo-
lution, 2005, pp. 65–68.

[110]* S.R. Schach, B. Jin, L. Yu, G.Z. Heller, J. Offutt, Determining the distribution
of maintenance categories: survey versus measurement, Empirical Soft-
ware Engineering, 8(4) (2003) 351–365.

[111] N.F. Schneidewind, Investigation of the risk to software reliability and
maintainability of requirements changes, in: Proceedings of the IEEE
International Conference on Software Maintenance, 2001, Florence, pp.
127–136.

[112] G.E. Stark, Measurements for managing software maintenance, in: Pro-
ceedings of IEEE International Conference on Software Maintenance,
1996, pp. 152–161.

[113]* R.C. Sugden, M.R. Strens, Strategies, tactics and methods for handling
change, in: Proceedings of the IEEE Symposium and Workshop on Engi-
neering of Computer-Based Systems, 1996, Friedrichshafen, pp. 457–
463.

[114]* M. Svahnberg, C. Wohlin, An investigation of a method for identifying a
software architecture candidate with respect to quality attributes,
Empirical Software Engineering, 10(2) (2005) 149–181.

[115]* M. Svahnberg, C. Wohlin, L. Lundberg, M. Mattsson, Quality attribute-dri-
ven selection of software architecture structures, in: Proceedings of the
14th International Conference on Software Engineering and Knowledge
Engineering, 2002, Ischia, Italy, ACM Press, pp. 819–826.

[116]* B. Swanson, ‘‘The dimensions of maintenance, in: Proceedings of the 2nd
International Conference on Software Engineering 1976, San Francisco,
CA, IEEE Computer Society Press, pp. 492–497.

[117]* L. Tahvildari, R. Gregory, K. Kontogiannis, An approach for measuring
software evolution using source code features, in: Proceedings of the
Sixth Asia Pacific Software Engineering Conference, 1999, Takamatsu,
pp. 10–17.

[118]* J.B. Tran, R.C. Holt, Forward and reverse repair of software architecture,
in: Proceedings of the 1999 Conference of the Centre for Advanced Stud-
ies on Collaborative Research, 1999, Mississauga, Ontario, Canada IBM
Press, pp. 12–21.

[119]* Q. Tu, M.W. Godfrey, An integrated approach for studying architectural
evolution, in: Proceedings of the 10th International Workshop on Pro-
gram Comprehension, 2002, pp. 127–136.

[120]* R.T. Tvedt, P. Costa, M. Lindvall, Does the code match the design? a pro-
cess for architecture evaluation, in: Proceedings of the International Con-
ference on Software Maintenance, 2002, pp. 393–401.

[121]* R.T. Tvedt, M. Lindvall, P. Costa, A process for software architecture eval-
uation using metrics, in: Proceedings of the 27th Annual NASA Goddard/
IEEE Software Engineering Workshop, 2002, pp. 191–196.
[122]* F. Van Rysselberghe, S. Demeyer, Mining version control systems for Facs
(Frequently Applied Changes), in: 26th International Conference on Soft-
ware Engineering, 2004, Edinburgh, Scotland, pp. 48–52.

[123]* P. Weissgerber, S. Diehl, Identifying refactorings from source-code
changes, in: 21st IEEE/ACM International Conference on Automated
Software Engineering, 2006, pp. 231–240.

[124]* Z. Xing, E. Stroulia, Analyzing the evolutionary history of the logical de-
sign of object-oriented software, IEEE Transactions on Software Engi-
neering, 31(10) (2005) 850–868.

[125]* Z. Xing, E. Stroulia, Umldiff: an algorithm for object-oriented design dif-
ferencing, in: Proceedings of the 20th IEEE/ACM International Confer-
ence on Automated Software Engineering, 2005, Long Beach, CA, ACM
Press

[126]* Y. Yang, C. Riva, Scenarios for mining the software architecture evolution,
in: Proceedings of the 2006 International Workshop on Mining Software
Repositories, 2006, Shanghai, China, ACM Press, pp. 10–13.

[127] A.T.T. Ying, G.C. Murphy, R. Ng, M.C. Chu-Carroll, Predicting source code
changes by mining change history, IEEE Transactions on Software Engi-
neering, 30(9) (2004) 574–586.

[128] J. Zhao, H. Yang, L. Xiang, B. Xu, Change impact analysis to support archi-
tectural evolution, Journal of Software Maintenance and Evolution: Re-
search and Practice 14(5) (2002) 317–333.

[129] T. Zimmermann, A. Zeller, P. Weissgerber, S. Diehl, Mining version histo-
ries to guide software changes, IEEE Transactions on Software Engineer-
ing 31(6) (2005) 429–445.

[130] D. Zowghi, R. Offen, A logical framework for modeling and reasoning
about the evolution of requirements, in: Proceedings of the Third IEEE
International Symposium on Requirements Engineering, 1997, Annapolis,
MD, pp. 247–257.
References

[1] Ieee Standard for a Software Quality Metrics Methodology, IEEE Std 1061-
1998, 1998.

[2] IEEE Standard for Software Maintenance, IEEE Std 1219-1998, Institute for
Electrical and Electronic Engineer, New York, NY, 1998.

[3] ISO/IEC FCD 9126-1.2 Information Technology––Software Product Quality,
ISO/IEC FCD 9126-1.2, 1998.

[4] ISO/IEC. Software Engineering—Software Maintenance Standard, ISO/IEC FDIS
14764, International Standards Organization, Geneva, Switzerland, 1999.

[5] W. Abdelmoez, M. Shereshevsky, R. Gunnalan, H.H. Ammar, Y. Bo, S. Bogazzi,
M. Korkmaz, A. Mili, Quantifying software architectures: an analysis of
change propagation probabilities, in: The 3rd ACS/IEEE International
Conference on Computer Systems and Applications, 2005, pp. 124–131.

[6] S. Ajila, Software maintenance: an approach to impact analysis of objects
change, Software – Practice and Experience 25 (10) (1995) 1155–1181.

[7] G. Antoniol, G. Canfora, A. De Lucia, Estimating the size of changes for evolving
object-oriented systems: a case study, in: Proceedings of the Sixth
International Software Metrics Symposium, Boca Raton, FL, 1999, pp. 250–258.

[8] M. Aoyama, Evolutionary patterns of design and design patterns, in:
Proceedings of the International Symposium on Principles of Software
Evolution, 2000, pp. 110–116.

[9] M. Aoyama, Metrics and analysis of software architecture evolution with
discontinuity, in: Proceedings of the International Workshop on Principles of
Software Evolution, ACM Press, Orlando, FL, 2002, pp. 103–107.

[10] T. Apiwattanapong, A. Orso, M.J. Harrold, Efficient and precise dynamic
impact analysis using execute-after sequences, in: Proceedings of the 27th
International Conference on Software Engineering, St. Louis, MO, 2005, pp.
432–441.

[11] R.S. Arnold, S.A. Bohner, Impact analysis-towards a framework for
comparison, in: Proceeding of the Conference on Software Maintenance,
Montreal, Que., 1993, pp. 292–301.

[12] J. Arthur, Software Evolution: A Software Maintenance Challenge, John Wiley
& Sons, 1988

[13] R.D. Banker, S.M. Datar, C.F. Kemerer, D. Zweig, Software complexity and
maintenance costs, Communications of the ACM 36 (11) (1993) 81–94.

[14] J. Baragry, K. Reed, Why we need a different view of software architecture, in:
Proceedings of the Working IEEE/IFIP Conference on Software Architecture,
Amsterdam, 2001, pp. 125–134.

[15] O. Barais, L. Duchien, A.F. Le Meur, A framework to specify incremental
software architecture transformations, in: 31st EUROMICRO Conference on
Software Engineering and Advanced Applications 2005, Porto, Portugal, pp.
62–69.

[16] M. Barbacci, M.H. Klein, T.A. Longstaff, C.B. Weinstock, Quality Attributes,
CMU/SEI-95-TR-021, Software Engineering Institute, , Carnegie Mellon, 1995.

[17] E. Barry, C.F. Kemerer, S.A. Slaughter, On the uniformity of software evolution
patterns, in: Proceedings of the International Conference on Software
Engineering, Portland, OR, 2003, pp. 106–113.

[18] E. Barry, S. Slaughter, C.F. Kemerer, An empirical analysis of software
evolution profiles and outcomes, in: Proceeding of the 20th International
Conference on Information Systems, Association for Information Systems,
Charlotte, NC, 1999, pp. 453–458.

B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51 49
[19] V. Basili, L. Briand, S. Condon, Y. Kim, W. Melo, J. Valen, Understanding and
predicting the process of software maintenance releases, in: Proceedings of
the 18th International Conference on Software Engineering, Berlin, Germany,
1996, pp. 464–474.

[20] V. Basili, G. Caldiera, H.D. Rombach, The goal question metric paradigm, in: J.J.
Marciniak (Ed.), Encyclopedia of Software Engineering, John Wiley & Sons,
Inc., New York, 1994, pp. 528–532.

[21] V. Basili, B.T. Perricone, Software errors, complexity: an empirical
investigation, Communications of the ACM 27 (1) (1984) 42–52.

[22] V. Basili, D. Weiss, Evaluation of a software requirements document by
analysis of change data, in: Proceedings of the 5th International Conference
on Software Engineering, IEEE Press, San Diego, CA, 1981, pp. 314–323.

[23] P. Bengtsson, J. Bosch, Architecture level prediction of software maintenance,
in: Proceedings of 3rd EuroMicro Conference on Maintenance and
Reengineering (CSMR’99), Amsterdam, Netherlands, 1999, pp. 139–147.

[24] J. Biolchini, P. Mian, A. Natali, G. Travassos, Systematic Review in Software
Engineering, RT – ES 679 / 05, S.E.A.C.S. Department, COPPE/UFRJ, 2005, Rio
de Janeiro, Brazil.

[25] S.A. Bohner, Impact analysis in the software change process: a year 2000
perspective, in: Proceedings of the International Conference on Software
Maintenance, Monterey, CA, 1996, pp. 42–51.

[26] S.A. Bohner, Software change impacts-an evolving perspective, in:
Proceedings of the International Conference on Software Maintenance,
Montreal, Quebec, Canada, 2002, pp. 263–272.

[27] J. Bosch, Design and Use of Software Architectures, Addison Wesley, 2000.
[28] P. Bose, Change analysis in an architectural model: a design rationale based

approach, in: Proceedings of the Third International Workshop on Software
Architecture, ACM Press, Orlando, FL, 1998, pp. 5–8.

[29] B. Brereton, B. Kitchenham, D. Budgen, M. Turner, M. Khalil, Employing
Systematic Literature Review: An Experience Report, Technical Report TR 05/
01, School of Computing & Mathematics, Keele University, Keele,
Staffordshire, UK, 2005.

[30] L. Briand, V. Basili, A classification procedure for the effective management of
changes during the maintenance process, in: Proceeding of the Conference on
Software Maintenance, Orlando, FL, 1992, pp. 328–336.

[31] L. Briand, Y. Labiche, L. O’sullivan, Impact analysis and change management of
Uml models, in: Proceedings of the International Conference on Software
Maintenance, Amsterdam, The Netherlands, 2003, pp. 256–265.

[32] L. Briand, Y. Labiche, L. O’sullivan, M.M. Sûwka, Automated impact analysis of
Uml models, Journal of Systems, Software 79 (3) (2006) 339–352.

[33] L. Briand, S. Morasca, V. Basili, Measuring and assessing maintainability at the
end of high level design, in: Proceedings of the Conference on Software
Maintenance, Montreal, Que., Canada, 1993, pp. 88–97.

[34] L. Briand, J. Wust, H. Lounis, Using coupling measurement for impact analysis
in object-oriented systems, in: Proceedings of the Conference on Software
Maintenance, Oxford, 1999, pp. 475–482.

[35] F. Brooks, The Mythical Man–Month, Addison-Wesley, 1975.
[36] J. Buckley, T. Mens, M. Zenger, A. Rashid, G. Kniesel, Towards a taxonomy of

software change, Journal of Software Maintenance, Evolution: Research,
Practice 17 (5) (2005) 309–332.

[37] A. Capiluppi, A.E. Faria, J.F. Ramil, Exploring the relationship between
cumulative change and complexity in an open source system, in: Ninth
European Conference on Software Maintenance and Reengineering, King’s
College, London, 2005, pp. 21–29.

[38] A. Capiluppi, J. Fernandez-Ramil, J. Higman, H.C. Sharp, N. Smith, An empirical
study of the evolution of an agile-developed software system, in: 29th
International Conference on Software Engineering, 2007, Minneapolis, MN,
pp. 511–518.

[39] S.J. Carriere, R. Kazman, S.G. Woods, Assessing and maintaining architectural
quality, in: Proceedings of the Third European Conference on Software
Maintenance and Reengineering, Amsterdam, 1999, pp. 22–30.

[40] N. Chapin, J.E. Hale, K.M. Khan, J.F. Ramil, W.-G. Tan, Types of software
evolution, software maintenance, Journal of Software Maintenance. Research,
Practice 13 (1) (2001) 3–30.

[41] M.A. Chaumun, H. Kabaili, R.K. Keller, F. Lustman, A change impact model for
changeability assessment in object-oriented software systems, in:
Proceedings of the Third European Conference on Software Maintenance
and Reengineering, 1999, pp. 130–138.

[42] M.A. Chaumun, H. Kabaili, R.K. Keller, F. Lustman, A change impact model for
changeability assessment in object-oriented software systems, Science of
Computer Programming 45 (2) (2002) 155–177.

[43] O.C. Chesley, X. Ren, B.G. Ryder, Crisp: a debugging tool for Java programs, in:
Proceedings of the International Conference on Sotware Maintenance, 2005,
pp. 401–410.

[44] P. Clarke, B. Malloy, P. Gibson, Using a taxonomy tool to identify changes in
Oo software, in: Proceedings of the Seventh European Conference on Software
Maintenance and Reengineering, 2003, pp. 213–222.

[45] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, J.
Stafford, Documenting Software Architectures: Views and Beyond, Addison-
Wesley, 2003.

[46] R. Conradi, M.N. Nguyen, A.I. Wang, Planning support to software process
evolution, International Journal of Software Engineering, Knowledge
Engineering 10 (1) (2000) 31–47.

[47] S. Cook, R. Harrison, P. Wernick, A simulation model of self-organising
evolvability in software systems, in: IEEE International Workshop on
Software Evolvability, 2005, pp. 17–22.
[48] R.T. Crocker, A. Von Mayrhauser, Maintenance support needs for object-
oriented software, in: Proceedings of the Seventeenth Annual International
Computer Software and Applications Conference, Phoenix, AZ, 1993, pp. 63–
69.

[49] S. Dekleva, Delphi study of software maintenance problems, in: Proceerdings
of the Conference on Software Maintenance, Orlando, FL, 1992, pp. 10–17.

[50] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, A. Mockus, Does code decay?
Assessing the evidence from change management data, IEEE Transactions on
Software Engineering 27 (1) (2001) 1–12.

[51] S.G. Eick, T.L. Graves, A.F. Karr, A. Mockus, P. Schuster, Visualizing
software changes, IEEE Transactions on Software Engineering 28 (4)
(2002) 396–412.

[52] T. Feng, J.I. Maletic, Applying dynamic change impact analysis in component-
based architecture design, in: Seventh ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking, and Parallel/
Distributed Computing, 2006, pp. 43–48.

[53] R. Fiutem, P. Tonella, G. Antoniol, E. Merlo, A cliche-based environment to
support architectural reverse engineering, in: Proceedings of the Third
Working Conference on Reverse Engineering, 1996, pp. 319–328.

[54] B. Fluri, H.C. Gall, Classifying change types for qualifying change couplings, in:
Proceedings of the 14th IEEE Conference on Program Comprehension, Athens,
Greece, 2006, pp. 35–45.

[55] M. Fowler, Refactoring: Improving the Design of Existing Code, 2000,
Addison-Wesley, Upper Saddle River, MJ.

[56] M. Fredericks, V. Basili, Using Defect Tracking and Analysis to Improve
Software Quality, SP0700-98-4000, DOD Data & Analysis Center for Software
(DACS), Rome, NY, 1998.

[57] H. Gall, M. Jazayeri, R.R. Klosch, G. Trausmuth, Software evolution
observations based on product release history, in: Proceedings of the
International Conference on Software Maintenance, 1997, pp. 160–166.

[58] J. Grundy, J. Hosking, High-level static and dynamic visualisation of software
architectures, in: Proceedings of the 2000 IEEE International Symposium on
Visual Languages, Seattle, WA, 2000, pp. 5–12.

[59] J. Gustafsson, J. Paakki, L. Nenonen, A.I. Verkamo, Architecture-centric
software evolution by software metrics and design patterns, in:
Proceedings fo the Sixth European Conference on Software Maintenance
and Reengineering, Budapest, 2002, pp. 108–115.

[60] A. Hac, Software renovation for large software applications, in: IEEE Region 10
International Conference (TENCON ‘92), Melbourne, Australia, 1992, pp. 307–
311.

[61] J.E. Hannay, D.I.K. Sjoberg, T. Dyba, A systematic review of theory use in
software engineering experiments, IEEE Transactions on Software
Engineering 33 (2) (2007) 87–107.

[62] G.T. Heineman, A. Mehtra, Architectural evolution of legacy systems, in:
Proceedings of the 23rd Annual International Computer Software and
Applications Conference, Phoenix, AZ, 1999, pp. 4–12.

[63] I. Herraiz, G. Robles, J.M. Gonzalez-Barahona, A. Capiluppi, J.F. Ramil,
Comparison between slocs and number of files as size metrics for software
evolution analysis, in: Proceedings of the 10th European Conference on
Software Maintenance and Reengineering, 2006, pp. 8.

[64] D.S. Hinley, Software evolution management: a process-oriented perspective,
Information and Software Technology 38 (11) (1996) 723–730.

[65] L. Hochstein, M. Lindvall, Combating architectural degeneration: a survey,
Information and Software Technology 47 (10) (2005) 643–656.

[66] P. Hsia, A. Gupta, C. Kung, J. Peng, S. Liu, A study on the effect of architecture
on maintainability of object-oriented systems, in: Proceedings of the
International Conference on Software Maintenance, 1995, pp. 4–11.

[67] I. Ivkovic, K. Kontogiannis, A framework for software architecture refactoring
using model transformations and semantic annotations, in: Proceedings of
the Conference on Software Maintenance and Reengineering, 2006, pp. 135–
144.

[68] M. Jorgensen, M. Shepperd, A systematic review of software development
cost estimation studies, IEEE Transactions on Software Engineering 33 (1)
(2007) 33–53.

[69] C.F. Kemerer, S. Slaughter, An empirical approach to studying software
evolution, IEEE Transactions on Software Engineering 25 (4) (1999) 493–503.

[70] S. Kim, E.J. Whitehead, J. Bevan, Analysis of Signature Change Patterns, in:
Proceedings of the 2005 International Workshop on Mining Software
Repositories, ACM Press, St. Louis, MO, 2005, pp. 1–5.

[71] S. Kim, E.J. Whitehead, Y. Zhang, Classifying software changes: clean or
buggy?, IEEE Transactions on Software Engineering 34 (2) (2008) 181–196

[72] B. Kitchenham, Procedures for performing systematic reviews, TR/SE-0401,
Department of Computer Science, Keele University, 2004, Keele, Staffs, UK.

[73] B. Kitchenham, E. Mendes, G. Travassos, Cross versus within-company cost
estimation studies: a systematic review, IEEE Transactions on Software
Engineering 33 (5) (2007) 316–329.

[74] B.A. Kitchenham, G.H. Travassos, A.V. Mayrhauser, F. Niessink, N.F.
Schneidewind, J. Singer, S. Takada, R. Vehvilainen, H. Yang, Towards an
Ontology of Software Maintenance, Journal of Software Maintenance:
Research and Practice 11 (6) (1999) 365–389.

[75] P. Kruchten, Architectural blueprints—the ‘‘4+ 1” view model of software
architecture, IEEE Software 12 (6) (1995) 42–50.

[76] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, C. Chen, Change impact
identification in object oriented software maintenance, in: Proceedings of the
International Conference on Software Maintenance, Victoria, BC, 1994, pp.
202–211.

50 B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51
[77] W. Lam, V. Shankararaman, Managing change in software development using
a process improvement approach, in: Proceedings of the 24th Annual
Euromicro Conference, Vasteras, 1998, pp. 779–786.

[78] W. Lam, V. Shankararaman, Requirements change: a dissection of
management issues, in: Proceedings of the 25th EuroMicro Conference,
1999, Milan, Italy, pp. 244–251.

[79] N. Lassing, D. Rijsenbrij, H. Van Vliet, Flexibility of the combad architecture,”
in: Proceedings of the First Working IFIP Conference on Software
Architecture, 1999, pp. 357–368.

[80] N. Lassing, D. Rijsenbrij, H. Van Vliet, Towards a broader view on software
architecture analysis of flexibility, in: Proceedings of the Sixth Asia Pacific
Conference on Software Engineering, 1999, pp. 238–245.

[81] Y. Lee, J. Yang, K.H. Chang, Metrics and evolution in open source software, in:
Seventh International Conference on Quality Software, 2007, pp. 191–197.

[82] M.M. Lehman, Programs, life cycles and laws of software evolution,
Proceedings of the IEEE 68 (9) (1980) 1060–1076.

[83] M.M. Lehman, Feedback, evolution and software technology, in: Proceedings
of the 10th International Process Support of Software Product Lines Software
Process Workshop, 1996, pp. 101–103.

[84] M.M. Lehman, L. Belady, Software Evolution – Processes of Software Change,
Academic Press, London, 1985.

[85] M.M. Lehman, D.E. Perry, J.F. Ramil, Implications of evolution metrics on
software maintenance, in: Proceedings of the International Conference on
Software Maintenance, Bethesda, MD, 1998, pp. 208–217.

[86] M.M. Lehman, D.E. Perry, J.F. Ramil, On evidence supporting the feast
hypothesis and the laws of software evolution, in: Proceedings of the Fifth
International Software Metrics Symposium, 1998, pp. 84–88.

[87] M.M. Lehman, J.F. Ramil, Towards a theory of software evolution – and its
practical impact, in: Proceedings of the International Symposium on
Principles of Software Evolution, 2000, pp. 2–11.

[88] M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, W.M. Turski, Metrics and
laws of software evolution-the nineties View, in: Proceedings of the Fourth
International Software Metrics Symposium, 1997, pp. 20–32.

[89] J.J. Li, D.B. Mulcare, W.E. Wong, Dependability of complex software systems
with component upgrading, in: Computer Software and Applications
Conference, 2000. COMPSAC 2000 The 24th Annual International, 2000, pp.
413–418.

[90] B. Lientz, B. Swanson, Software maintenance management, Addison-Wesley,
1980.

[91] I.H. Lin, D.A. Gustafson, Classifying software maintenance, in: Proceedings of
the Conference on Software Maintenance, Scottsdale, AZ, 1988, pp. 241–247.

[92] M. Lindvall, K. Sandahl, How well do experienced software developers predict
software change?, Journal of Systems and Software 43 (1) (1998) 19–27.

[93] M. Lindvall, R. Tesoriero, P. Costa, Avoiding architectural degeneration: an
evaluation process for software architecture, in: Proceedings of the Eighth
IEEE Symposium on Software Metrics, 2002, pp. 77–86.

[94] N.H. Madhavji, The prism model of changes, in: Proceedings of the 13th
International Conference on Software Engineering, Austin, TX, 1991, pp. 166–
177.

[95] N.H. Madhavji, Environment evolution: The prism model of changes, IEEE
Transactions on Software Engineering 18 (5) (1992) 380–392.

[96] J.F. Maranzano, S.A. Rozsypal, G.H. Zimmerman, G.W. Warnken, P.E. Wirth,
D.M. Weiss, Architecture reviews: experience and practice, IEEE Software 22
(2) (2005) 34–43.

[97] P.J. Mayhew, C.J. Worsley, P.A. Dearnley, Control of software prototyping
process: change classification approach, Information and Software
Technology 31 (2) (1989) 59–66.

[98] D.S. Mccrickard, G.D. Abowd, Assessing the impact of changes at the
architectural level: a case study on graphical debuggers, in: Proceedings of
the International Conference on Software Maintenance, Monterey, CA, 1996,
pp. 59–67.

[99] E. Mendes, A systematic review of web engineering research, in: International
Symposium on Empirical Software Engineering, 2005, pp. 498–507.

[100] T. Mens, J. Buckley, M. Zenger, A. Rashid, Towards a taxonomy of software
evolution, in: Proceedings of the International Workshop on Unanticipated
Software Evolution, Warsaw, Poland, 2003, pp. 1–18.

[101] T. Mens, T. Tourwe, A survey of software refactoring, IEEE Transactions on
Software Engineering 30 (2) (2004) 126–139.

[102] R. Mittermeir, Software evolution: let’s sharpen the terminology before
sharpening (out-of-scope) tools, in: Proceedings of the 4th International
Workshop on Principles of Software Evolution, ACM Press, Vienna, Austria,
2001, pp. 114–121.

[103] A. Mockus, S.G. Eick, T. Graves, A. Karr, On Measurement and Analysis of
Software Changes”, Doc. No. ITD-99-36760F, BL0113590-990401-06TM,
National Institute of Statistical Sciences, 1999.

[104] A. Mockus, L.G. Votta, Identifying reasons for software changes using historic
databases, in: Proceedings of the International Conference on Software
Maintenance, San Jose, CA, 2000, pp. 120–130.

[105] A. Mockus, D. Weiss, Predicting risk of software changes, Bell Labs Technical
Journal 5 (2) (2000) 169–180.

[106] P. Mohagheghi, R. Conradi, An empirical study of software change: origin,
acceptance rate, and functionality vs. quality attributes, in: Proceedings of
the 2004 International Symposium on Empirical Software Engineering (ISESE
‘04), 2004, pp. 7–16.
[107] V. Nanda, N.H. Madhavji, The impact of environmental evolution on
requirements changes, in: Proceedings of the International Conference on
Software Maintenance, 2002, pp. 452–461.

[108] J. Nedstam, E.A. Karlsson, M. Host, The architectural change process, in:
Proceedings of the 2004 International Symposium on Empirical Software
Engineering (ISESE ‘04), 2004, pp. 27–36.

[109] M.N. Nguyen, R. Conradi, Classification of meta-processes and their models,
in: Proceedings of the Third International Conference on the Software
Process, 1994, pp. 167–175.

[110] N. Nguyen, Framework and Approach for Managing Software Process
Evolution in Epos, NTNU, Trondheim, Norway, Doctoral Thesis, 1997.

[111] N. Nurmuliani, D. Zowghi, S.P. Williams, Using card sorting technique to
classify requirements change, in: Proceedings of the 12th IEEE International
Requirements Engineering Conference, 2004, pp. 240–248.

[112] J.S. O’neal, D.L. Carver, Analyzing the impact of changing requirements, in:
Proceedings of the International Conference on Software Maintenance,
Florence, 2001, pp. 190–195.

[113] C. O’reilly, P. Morrow, D. Bustard, Lightweight prevention of architectural
erosion, in: Proceedings of the Sixth International Workship on Principles of
Software Evolution, Helsinki, Finland, 2003, pp. 59–64.

[114] D.L. Parnas, Software Aging, in: Proceedings of the 16th International
Conference on Software Engineering, Sorrento, Italy, 1994� pp. 279–287.

[115] N. Phillips, S. Black, Distinguishing between learning, growth and evolution,
in: IEEE International Workshop on Software Evolvability, 2005, pp. 49–52.

[116] D. Port, H. Liguo, Strategic architectural flexibility, in: Proceedings of the
International Conference on Software Maintenance, Amsterdam, The
Netherlands, 2003, pp. 389–396.

[117] A. Postma, P. America, J.G. Wijnstra, Component replacement in a long-living
architecture: the 3rdba approach, in: Fourth Working IEEE/IFIP Conference on
Software Architecture (WICSA ‘04), 2004, pp. 89–98.

[118] J.S. Poulin, Evolution of a software architecture for management information
systems, in: Joint Proceedings of the Second International Software
Architecture Workshop and International Workshop on Multiple
Perspectives in Software Development, ACM Press, San Francisco, CA, 1996,
pp. 134–137.

[119] R. Purushothaman, D.E. Perry, Toward understanding the rhetoric of small
source code changes, IEEE Transactions on Software Engineering 31 (6)
(2005) 511–526.

[120] J.F. Ramil, Laws of software evolution and their empirical support, in:
Proceedings of the International Conference on Software Maintenance, 2002,
pp. 71–71.

[121] J. Ratzinger, M. Fischer, H. Gall, Improving evolvability through refactoring,
in: Proceedings of the 2005 International Workshop on Mining Software
Repositories, ACM Press, St. Louis, MO, 2005, pp. 1–5.

[122] X. Ren, F. Shah, F. Tip, B.G. Ryder, O. Chesley, Chianti: a tool for change
impact analysis of java programs, in: Proceedings of the 19th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Springer, Vancouver, BC, Canada, 2004, pp.
432–448.

[123] J.E. Robbins, D.M. Hilbert, D.F. Redmiles, Using critics to analyze evolving
architectures, in: Joint Proceedings of the Second International Software
Architecture Workshop and International Workshop on Multiple
Perspectives in Software Development, ACM Press, San Francisco, CA, 1996,
pp. 90–93.

[124] H. Rombach, B. Ulery, J. Valett, Toward Full Life Cycle Control: Adding
Maintenance Measurement to the Sel, Journal of Systems and Software 18 (2)
(1992) 125–135.

[125] N. Sadou, D. Tamzalit, M. Oussalah, A unified approach for software
architecture evolution at different abstraction levels, in: Proceedings of the
2005 Eighth International Workshop on Principles of Software Evolution,
2005, pp. 65–68.

[126] S.R. Schach, B. Jin, L. Yu, G.Z. Heller, J. Offutt, Determining the Distribution of
Maintenance Categories: Survey Versus Measurement, Empirical Software
Engineering 8 (4) (2003) 351–365.

[127] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall, Upper Saddle River, NJ, 1996.

[128] I. Sommerville, Software Engineering, 7th ed., Addison-Wesley, 2004.
[129] M. Stoerzer, B.G. Ryder, X. Ren, F. Tip, Change Classification and Its

Applications to Program Development and Testing, Technical Report
DCS-TR-05-566, Department of Computer Science, Rutgers University,
2005.

[130] R.C. Sugden, M.R. Strens, Strategies, tactics and methods for handling change,
in: Proceedings of the IEEE Symposium and Workshop on Engineering of
Computer-Based Systems, Friedrichshafen, 1996, pp. 457–463.

[131] M. Svahnberg, C. Wohlin, An investigation of a method for identifying a
software architecture candidate with respect to quality attributes, Empirical
Software Engineering 10 (2) (2005) 149–181.

[132] M. Svahnberg, C. Wohlin, L. Lundberg, M. Mattsson, Quality attribute-driven
selection of software architecture structures, in: Proceedings of the 14th
International Conference on Software Engineering and Knowledge
Engineering, ACM Press, Ischia, Italy, 2002, pp. 819–826.

[133] B. Swanson, The dimensions of maintenance, in: Proceedings of the 2nd
International Conference on Software Engineering, IEEE Computer Society
Press, San Francisco, CA, 1976, pp. 492–497.

B.J. Williams, J.C. Carver / Information and Software Technology 52 (2010) 31–51 51
[134] L. Tahvildari, R. Gregory, K. Kontogiannis, An approach for measuring
software evolution using source code features, in: Proceedings of the Sixth
Asia Pacific Software Engineering Conference, Takamatsu, 1999, pp. 10–17.

[135] J.B. Tran, R.C. Holt, Forward and reverse repair of software architecture, in:
Proceedings of the 1999 Conference of the Centre for Advanced Studies on
Collaborative Research, IBM Press, Mississauga, Ontario, Canada, 1999, pp.
12–21.

[136] Q. Tu, M.W. Godfrey, An integrated approach for studying architectural
evolution, in: Proceedings of the 10th International Workshop on Program
Comprehension, 2002, pp. 127–136.

[137] R.T. Tvedt, P. Costa, M. Lindvall, Does the code match the design? A process
for architecture evaluation, in: Proceedings of the International Conference
on Software Maintenance, 2002, pp. 393–401.

[138] R.T. Tvedt, M. Lindvall, P. Costa, A process for software architecture
evaluation using metrics, in: Proceedings of the 27th Annual NASA
Goddard/IEEE Software Engineering Workshop, 2002, pp. 191–196.
[139] F. Van Rysselberghe, S. Demeyer, Mining version control systems for Facs
(frequently applied changes), in: 26th International Conference on Software
Engineering, Edinburgh, Scotland, 2004, pp. 48–52.

[140] P. Weissgerber, S. Diehl, Identifying refactorings from source-code changes,
in: 21st IEEE/ACM International Conference on Automated Software
Engineering, 2006, pp. 231–240.

[141] Z. Xing, E. Stroulia, Analyzing the evolutionary history of the logical design of
object-oriented software, IEEE Transactions on Software Engineering 31 (10)
(2005) 850–868.

[142] Z. Xing, E. Stroulia, Umldiff: an algorithm for object-oriented design
differencing, in: Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, ACM Press, Long Beach,
CA, 2005.

[143] Y. Yang, C. Riva, Scenarios for mining the software architecture evolution, in:
Proceedings of the 2006 International Workshop on Mining Software
Repositories, ACM Press, Shanghai, China, 2006, pp. 10–13.

	Characterizing software architecture changes: A systematic review
	Introduction
	Background
	Software change
	Change classification

	Research method
	Research questions
	Sources selection and search
	Data extraction and quality assessment

	Reporting the review
	Research question 1: what are the attributes in existing software change classification taxonomies?
	Prescriptive change types
	Source code changes
	Organizational influence

	Research question 2: how are software architecture elements and relationships used when determining the effects of a software change?
	Research question 3: How is the architecture affected by functional and non-functional changes to the system requirements?
	Research Question 4: How is the impact of architecture changes qualitatively assessed?
	Research Question 5: What types of architecture changes can be made to common architectural views?
	SACCS exclusion criteria

	Software architecture change characterization scheme (SACCS)
	Characterization scheme overview
	General characteristics
	Motivation
	Source
	Criticality/importance
	Developer experience
	Category
	Granular effect
	Properties
	Features
	Quality attributes
	Logical
	Runtime
	Complete general characterization scheme

	Specific characterization
	Logical views
	Runtime views

	Excluded attributes

	Research implications and conclusions
	Acknowledgements
	Appendix A
	Appendix B
	References

