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Procedural Techniques for Large, Dynamic Sets in Elemental
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ABSTRACT

The world of Pixar’s film Elemental is inhabited by characters made
of fire, water, air and earth, and we needed to give these characters
a home that was just as dynamic as they were. Specifically, we
needed to build a city with new and distinct forms of architecture
for each element, fill this city with fire, water. smoke and vegeta-
tion, and add animation to make everything feel alive in the way
a bustling city should. In this talk, we present our techniques for
handling problems of scale, such as parameterized building gener-
ation and dressing, application of a variety of fx elements within
large sets, as well as some novel approaches for automated color
palette generation, both in an asset and shot context.

KEYWORDS

environments, lookdev, production design, houdini, proceduralism
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1 PALETTE BASED SHADING

Fire Town is a large city in Elemental consisting of stylized build-
ings for fire characters. The building shapes are very distinct from
past Pixar films, and the number of Fire Town building designs
wrome waledieesl- imited. One way that we added variation was by

BE? ckground ainced buildings using an image-based color picking
Cinema e the palette of the city was generated [rom one

or more input images. One of three materials is assigned to each

Aylwin Villanueva
aylwin@pixar.com
Pixar Animation Studios

Brandon Montell
montell@pixar.com

Pixar Animation Studios
Hosuk Chang

hosuk@pixar.com
Pixar Animation Studios

Figure 1: A section of procedural city with a palette based on
the images of the three people below. ©@Pixar.
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Figure 2: The left image represents how this set was shaded
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Timestep t

Technology N
Movie Gen by
Meta

Nx Transformer Blocks ——

TAE
Decoder

Cross-attention

Long-prompt
MetaCLIP 8715

T_H

Anemu holding a sign says
“No, Movie Gen is the best”

+pos embed

0000000000000000

Gaussian noise

Figure 3 Overview of the joint image and video generation pipeline. We train our generative model on a spatio-temporally
compressed latent space, which is learned via a temporal autoencoder model (TAE). User-provided text prompts are
encoded using pre-trained text-encoders, and used as conditioning. Our generative model takes sampled Gaussian
noise and all provided conditioning as input, and generates an output latent, which is decoded to an output image or
video using the TAE decoder.

3.1 Image and Video Foundation Model

We describe the key components of the MovIE GEN VIDEO model —the spatio-temporal autoencoder (TAL),
the training objective for image and video generation, model architecture, and the model scaling techniques
we use in our work.
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Turning visual data into patches
Technology : p
0 p e n A I S 0 r a We take inspiration from large language models which acquire generalist capabilities by

training on internet-scale data.”® ** The success of the LLM paradigm is enabled in part
by the use of tokens that elegantly unify diverse modalities of text—code, math and
various natural languages. In this work, we consider how generative models of visual
data can inherit such benefits. Whereas LLMs have text tokens, Sora has visual patches.
Patches have previously been shown to be an effective representation for models of
visual data.’516.7.18 We find that patches are a highly-scalable and effective
representation for training generative models on diverse types of videos and images.

At a high level, we turn videos into patches by first compressing videos into a lower-
dimensional latent space,”® and subsequently decomposing the representation into
spacetime patches.
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Rio de Janeiro landscape clear sky, Llush Rio de Janeiro landscape clear sky, vegetation
vegetation, few boats in the water, calm sea. covered in snow, frozen water, sunset lights,
calm sea.
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e What methodologies and techniques can be
employed to exert greater control over the
specific visual elements that AI hallucinates
and reproduces?

e How does leveraging additional data sources
beyond the prompt contribute to enhancing the
precision and accuracy of AI-generated visual
content by providing contextual and semantic
information?

Background
Research Questions
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snowing day in Guanabara Bay, VSCO, Pinterest,
renaissance style, hyperrealism, 4k, award-winning

photograph

dense mass of green

vegetation, thick bush
or hedge.
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