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Introduction Definition Questions

Motivation

e X-Ray Computed Tomography (CT)
offers a non-invasive technique for
assessing internal structures of
objects

* Applied over multiple domains:

* Medical (golden standard for trauma
assessment [43])

* Archaeology [28]
* Paleontology [23,44]
* Material Science [50]
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* Synchrotron facilities allow achieving
higher spatial and time resolutions
if compared to conventional X-Ray
sources [16]
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https://commons.wikimedia.org/wiki/Scrollable_computed_tomography_images_of_a_normal_abdomen_and_pelvis
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High doses of radiation may be
harmful for health [9,40] while for
radiation-sensitive samples it may
cause damages to it and directly
impact the experimental results [36]

Development of Low-dose Computed
Tomography (LDCT) techniques is
crucial

* As Low As Reasonably Achievable (ALARA)
principle

°
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Lower dose = lower CT image quality
[17,49,51]

* Higher noise
* Lower contrast A

Normal-dose

Methods to enhance LDCT image
quality is crucial
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* The problem can be defined as a
Degradation/Restoration problem Original

image

* Objective: Developed a way to restore the

image as similar as possible to the original

Goals and Literature
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Results R
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* The problem can be defined as a |- T :
Degradation/Restoration problem I
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¢ Anatomical noise
e Structure noise
¢ Electronic noise

Electronic Noise
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image as similar as possible to the original | I 1= | signal + noise Nf/J\/J g
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I Noise | = W/ﬂ / o
* CTimages are susceptible to various l s it 8 v
sources of noise [9]: I n(x, y) " electronic noise
0
* Grain noise | 0 20 4 80 g0 100
* Quantum noise I Time (s)
I
I

* Low-dose exposure worsens image quality

Grain Noise

[6] 1€ 19 8190qysng :924n0S
[6] 1819 B18qUsng :801n0S
wduoysng 11ema)lg :821n0g

Structured Noise Quantum mottle Optimal image

Anatomical Noise
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The problem can be defined as a
Degradation/Restoration problem

Objective: Developed a way to restore the flx,y) |::>
image as similar as possible to the original

Solutions are typically classified as [36, 42]:
Raw data filtering
Iterative reconstruction

Post-processing algorithms

¥

Classical/Non-Learning CNN-based
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* The problem can be defined as a
Degradation/Restoration problem

Degradati
* Objective: Developed a way to restore the flx,y) |::> egr;f ation

image as similar as possible to the original

Restoration i
filter(s)

* Solutions are typically classified as [36, 42]:

Raw data filtering

lterative reconstruction DEGRADATION

* Post-processing algorithms

3 S |

Classical/Non-Learning CNN-based GAN-based Diffusion-based
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1. Performance
requires
improvement
[17, 56]
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* The problem can be defined as a
Degradation/Restoration problem

Degradati
* Objective: Developed a way to restore the flx,y) |::> egr;f ation

image as similar as possible to the original

Restoration _—_::>
filter(s)

* Solutions are typically classified as [36, 42]:

Raw data filtering

lterative reconstruction DEGRADATION

* Post-processing algorithms
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Classical/Non-Learning CNN-based GAN-based Diffusion-based
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1. Good Performance

1. Performan :
erformance 2. Causes over-smoothing

: requires 3. Poor generalization
improvement for unseen dose levels
[17, 56]

[17,18]



. Materials Work Plan
) o Problem Research Cozend Literature and and
Introduction Motivation L . Expected . :
Definition Questions Review Execution
Results Methods Timeline

* The problem can be defined as a
Degradation/Restoration problem

| |
| |
glx,y) | :
Degradati l I
- Objective: Developed a way to restore the  [(X,¥) |::> egr;f ation :> R??{;ﬁ;‘m —_—rl‘_|>
image as similar as possible to the original I I
| |
G Noise | I
« Solutions are typically classified as [36, 42]: 1(xy) : :
Raw data filtering : I
Iterative reconstruction DEGRADATION I RESTORATION |
* Post-processing algorithms | |

3 S |

Classical/Non-Learning CNN-based GAN-based Diffusion-based
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3. Poor generalization i
improvement g 3. Unstable train
(17, 56] forunseen dose levels 4. Value shift
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* The problem can be defined as a
Degradation/Restoration problem

| |
| |
glx,y) ! :
Degradati l I .
. Objective: Developed a way to restore the (X, y) [ > egr;f e — R??{;ﬁ;‘m —_—‘r_:> flx,y)
image as similar as possible to the original I I
| |
G Noise | I
« Solutions are typically classified as [36, 42]: 1(xy) : :
Raw data filtering : I
Iterative reconstruction DEGRADATION I RESTORATION |
| |
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* Post-processing algorithms

3 S |

Classical/Non-Learning CNN-based GAN-based Diffusion-based
> o O O O
 Pertormance 1. Good Performance 1. Better detail preservation 1. Pro.mising results for denoising in other
- . 2. Causes over-smoothing 2. Better generalization domains when compared to CNN and GANS
- requires 3. Poor generalization 3 Unstable train 2. Already explored for LDCT[17,18,35, 56]
Improvement for unseen dose levels 4. Value shift 3. Not extensively explored yet
[17, 56] [17,18] ' (17, 18] 4. Never applied to synchrotron LDCT

denoising
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Can diffusion models perform denoising tasks on LDCT reconstructed data
toward increasing the quality of synchrotron LDCT?
Can diffusion models trained over CT medical images be directly
® repurposed to perform denoising tasks on LDCT synchrotron images?
Does finetunning a model trained over CT medical images with synchrotron CT
images enhances the acquired results?




Introduction

. Materials
- Problem Research Goals and Literature and
PG Definition Questions SR i
Results Review Methods

Evaluate diffusion-based generative models for denoising synchrotron LDCT

Assess the generalization of diffusion models trained on medical LDCT images
for denoising synchrotron LDCT images

Contribute with a methodology based on diffusion generative models for
enhancing synchrotron LDCT image quality

Explore taking advantage of medical LDCT datasets to train models to be used
over synchrotron LDCT images

Work Plan
and
Execution
Timeline
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* Radiation is “energy that travels through [ ELECTROMAGNETIC RADIATION SPECTRUM D |
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Radiation is “energy that travels through
space or matter” [9]

Due to the “wave-particle duality” from
quantum mechanics EM can be described
as both waves and particles called photon

Characterized by:
*  Wavelength (A)
* Frequency (v)
* Energy (E)

E=hv

Divided in groups according to those
characteristics

lonization may occur when photon
interacts with molecules/atom
depending on:

* Photon energy

* Target molecule/atom
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* Types of interaction between EM o & R
radiation and matter [9]: ¢ & o e
* Rayleigh Scattering ¢

* Compton Scattering

* Photoelectric Absorption 'Qﬁﬁiﬁ‘ Q  ’0 Mg o e
* Pair Production (Only on high-energies) N T g
W
M=ty
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Radiation Interaction
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0 - . / Valence electrons
* Types of interaction between EM ¢ o e
radiation and matter [9]: § & o e 8 M
* Rayleigh Scattering g e [ ./ O\ Sc?]tttered |
' ‘ | photon ‘
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* Photoelectric Absorption photon v e ¢ g - é sleciron (Eo)
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EM Attenuation can be defined as a ek

Proportion of atoms per volume [9] Photoelectric Absorption

Characteristic
X-rays:

A: 1 keV (N—M)

B: 4 keV (M—L)

C: 28 keV (L—K)
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o Types Of |nte ra Ction between EM = .u'll:-l.ylt:ig.:h scaller + .“'phuh:lchu:‘l.rlt: ellect + uﬁunpt{m scaller + .”'pair production
radiation and matter [9]:
* Rayleigh Scattering

* Compton Scattering

. ) Material densit
Mass Attenuation Coeflicient = @/ y

* Photoelectric Absorption
* Pair Production (Only on high-energies)

Combined occurrence

EM Attenuation
—

Varies with material
composition and thickness

NS

EM Attenuation can be defined as a
Proportion of atoms per volume [9]
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radiation and matter [9]:
* Rayleigh Scattering

* Compton Scattering

. ) Material densit
Mass Attenuation Coeflicient = @/ y

* Photoelectric Absorption

Diagnostic Muclear
Radiology  Medicine

20 =—(70-80)~— 511

* Pair Production (Only on high-energies)

Mass Attenuation Coefficients for Soft Tissue
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Combined occurrence E e B sl
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S S 0003} s
0 100
= S

100 1000 0.001 ) ) )
keV 10 100 1,000 10,000
o Energy (keV)

Source: Bushberg et al. [9]
EM Attenuation can be defined as a
Proportion of atoms per volume [9]
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* Radiation dose is the energy deposited Photons
in the irradiated material [9] (p — g/; — (;6 X
Area
Very simplified way to calculate, as it don’t consider:
* Fluence (¢) and flux () « Poly-energetic behavior of the radiation source
» Synchrotron facilities have a higher flux * Material heterogeneity and morphology
than medical X-Ray sources * Radiation-matter interaction variation

* Scattering causing re-interaction
* Surroundings

 Absorbed Dose (D) M @ High complexity on precisely calculating dose

. Radiati tecti d Medical Irradiated material mass e
adiation protection and lMedica Due to that complexity, dose calculation varies
Imaging application commonly uses: depending on application

* Equivalent Dose (H)

* Adds a weighting factor based on the
adiation ype ) H=DXWwp  Eg.=Y (wpx Hr)
* Effective Dose (E se) Os€

* Adds a weighting factor based on T
each material being irradiated

Radiation effectiveness on causing

. . Material sensitivity
biological damage
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« X-Ray Computer Tomography can be Acquisition
summarized in two stages acquisition
and reconstruction [31, 36]

* Acquisition: Capture 2D transmission
projection images of an object from
various angles around a common axis

BIPadD|IAA :824N0S

Reconstruction

* Reconstruction: Apply a computational
reconstruction method to restore object's
3D morphology y

yl

180 A point g(p;, 0) in

th jecti
Complete projection, g(p, 6), ¥ e

for a fixed angle —/

135
0 9%

45

L(Pp()k) =
xcosf + ysinb, — p;
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X-Ray Computed
Tomography (CT)
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Review Concepts Work Methods Tomography (CT)

* X-Ray Computer Tomography can be
summarized in two stages acquisition
and reconstruction [31, 36]

I T T_Tr—ll_
E. ..=
-HE B™ -

ttte tttt

* Acquisition: Capture 2D transmission
projection images of an object from
various angles around a common axis

* Reconstruction: Apply a computational
reconstruction method to restore object's
3D morphology

Source: "La Découverte de 'ombre" (Roberto Casati)

Source: Gonzales R. C. and Woods R. E. [20] 25

o Inverse problem

o Different object may cause same
projection

* The more acquired projections the better
the reconstruction

o Intheory, with o projections, it
would be possible to invert the
Radon transform exactly
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* According to Bushberg et al. [9], CT image quality

is strongly bounded to:
* Spatial Resolution
* Contrast Resolution
* Temporal Resolution

* Spatial Resolution:

* Ability to distinguish two objects of
different densities

* Determines edge sharpness and detail
clarity

* Related to how much of real space is
represented by a pixel/voxel

e Contrast Resolution:

* Ability to differentiate objects with similar

densities using grayscale values

* Emphasizes distinction between similarly

shaded objects

* Temporal Resolution:
* How long CT image acquisition takes
* Crucial forimaging moving objects

Contrast

Computation
Concepts

Detail

Related
Work

Contrast

Detail

Materials

and

Methods

Contrast

[6] 1€ 12 8190qysng :924n0S

CT Image Quality

Detail
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e Discriminative Models:

* Learn afunction capable of defining
boundaries that distinguish which class a
sample fits

p(y)

e Generative Models :

* Learn how to transform a latent space
variable (z) into a data space variable (x)

wn
o
* Conditioned Generative Models : _ i
* The same as generative models but Discriminative Model Generative Model 5
condition the transformation to guide the ?3
transformation p(XIZ,y) §
o
N\ PXIZ0O)
p(x| z,0)
p(x| z,C)

Conditioned Generative Model
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Generative Models

e Discriminative Models:

* Learn afunction capable of defining
boundari.es that distinguish which class a GAN: Adversarial , . Discriminator 7 Generator N
sample fits o X X
training D(x) G(z)
* Generative Models :
* Learn how to transform a latent space
variable (z) into a data space variable (x)
VAE: maximize x z Decoder .
variational lower bound po(x|z)
* Conditioned Generative Models :
* The same as generative models but
condition the transformation to guide the
transformation Inverse
Flow-based models: X > e > Z .1 >
Invertible transform of f(x) [ (2)
« Learning to map latent space variables (z) distributions
to data space variables (x) is the core
idea of many generative models.
Diffusion models:l X0 - X1 - Xo .
Gradually add Gaussian - *«--1 ~f*-------- T ity
noise and then reverse

[7G] ueniq ‘8uspp :921nog
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real images

* Generative Adversarial Networks (GANS) [21]
* Generator

= (Generate realistic samples by
transforming data from latent space
p(z) to samples from data space p(x)

* Discriminator
= Distinguish fake and real samples

* Adversarial training:
e Shared loss between models Z —F[ Generator ]—>
¢ Discriminator » Minimizes the error

* Generator > Maximizes the error g(z,w)
* Force both models to improve iteratively synthetic images

->[ Discriminator ]—» t
i

d(x, ¢)

[g] doysig pue doysig :924n0g

* Training GANs can be challenging

* Model collapse: Generator map p(z) to only a
subgroup of p(x)

* No clear progression metric

Probability

« \Wasserstein Generative Adversarial Network To—a(X) -
(WGAN) [37]

- More stability =

* Ensure the generator is Moving toward the
desired distribution

* Meaningful loss to show training progression Space X

q(y)

«xx O1] PUB O1BZBYEN :92.N0S

A\ 4

Wasserstein distance 29
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* Diffusion models [46] typically involve two
stages:

* Forward encoder

= Gradually corrupts input data by
adding noise to it

= After several steps input datais
transformed on a known noise-like
distribution

Computation

Concepts

Materials
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Related
Work

Models

Diffusion-based

: :q(zﬂz;_l}: : @

Noise add each step

Zy = \/1_—Btzt—1 + WL@ ~ N(e0,
No

ise distribution variance on step t
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* Diffusion models [46] typically involve two
stages:

* Forward encoder

= Gradually corrupts input data by
adding noise to it

= After several steps input datais
transformed on a known noise-like
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Diffusion models [46] typically involve two

stages:

* Forward encoder

Gradually corrupts input data by
adding noise to it

i}'{zt—llzhxj
After several steps input data is -

transformed on a known noise-like

distribution q(z¢|ze—1)
* Reverse decoder
Progressively denoise the data to
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Neutron tomography is a crucial tool for material examination, but ring artifacts can significantly
decrease data quality and complicate tasks like segmentation and morphological analysis. The Block-
Matching and 3D filtering (BM3D) algorithm, known for mitigating vertical streaks in sinograms
and addressing the root cause of ring artifacts, is unfortunately slow and CPU-intensive. We intro-
duce a unique, open-source software solution that eliminates ring artifacts in neutron tomography
using the BM3D algorithm. By leveraging both CPU acceleration through Numba and GPU accelera-
tion through CuPy, our approach significantly improves computational efficiency while maintaining
data integrity. This dual-acceleration framework drastically speeds up BM3D processing, allowing
researchers to quickly obtain refined results and streamline segmentation and morphological analy-
sis.

7¢0Z SONGON :8d1nos

Abstract publication:

I agree that the abstract will be published on the web site


https://indico.esrf.fr/event/114/book-of-abstracts.pdf

Materials
and

Methods

Literature

Physics Computation Related
Concepts Concepts Work

Introduction

CNN-based Methods

Review

* Non-Learning Classical Methods
* Non-Local Means [8]

* Block-Matching and 3D Filtering [13] RED-CNN

.CONV 'DeCONV 'ReLU Skip connections

* CNN-based Methods
* RED-CNN|[12]

[z1] €12 uayy :921n0Sg




Materials
and

Methods

Literature

Physics Computation Related

Introduction
Concepts Concepts Work

GAN-based Methods

Review

WGAN-VGG

* Non-Learning Classical Methods
° NOI’]—LocaI_ Mea ns [8] Part 2. Perceptual Loss Calculator

* Block-Matching and 3D Filtering [13]

NDCT Images

Part 1. CNN Generator
° C N N _ ba Sed M ethOd S n32s1 n32s1 n32s1 n32s1 n32s1 n32s1 n32s1 nlsl
- —

« RED-CNN[12]

VGG network

LDCT Images
Conv+RelU
Conv+RelU
Conv+RelU
Conv+RelU
Conv+RelU
Conv+RelU
Conv+RelU

Part 3. Discriminator Network

Generated Images
[£5] 1210 SueA :921n0S

* GAN-based Methods
« WGAN-VGG [57]
« DU-GAN[27]

Generator

Discriminator

)
[
oo
o
E
G
o
=z

Discrimin
ator Loss

b)

Per Pixel Real / Fake

SR
A

0.44

Denoised LDCT NDCT Global Real / Fake
Generator
W c)

Global Real / Fake
0.61

LDCT Denoised LDCT

[£2] e 18 Sueny :90in0g

-
Per Pixel Real / Fake



M Literature Physics Computation Related Ma;i:jlals Diffusion-based
ntroduction
i Concepts
Review p Concepts Work Methods Methods

* Non-Learning Classical Methods
* Non-Local Means [8] ColdDiffusion
* Block-Matching and 3D Filtering [13] Original Forward » Degraded Reverse

> Generated

e CNN-based Methods
« RED-CNN[12]

Noise
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 Diffusion-based Methods
* Cold Diffusion [2]
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* Contextual Conditional Diffusion model
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[11, 38]
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Beam X-Ray Computed
Tomography dataset

(LoDoPab-CT)
[34]

2016 Low Dose CT
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Dataset
[39]
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and
Execution
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Metrics Methodology

Synchrotron Datasets

A repository of some
public experimental data

X-Ray Tomography Data
Bank

possibility

Sirius images provided

(TomoBank) by internal researches

[14]

* Number of Medical CT scans
available is much higher than
synchrotron CT scans!

e Low-dose data are simulated
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« Stage 1: Dataset Preparation

o Simulate LDCT data for a range of different dose
levels using the algorithm proposed by Yu et al. [58]
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e Stage 1: Dataset Preparation

o Simulate LDCT data for a range of different dose
levels using the algorithm proposed by Yu et al. [58]
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» Stage 1: Dataset Preparation

o Simulate LDCT data for a range of different dose
levels using the algorithm proposed by Yu et al. [58]

o Train/Test set split

« Stage 2: Baseline Metrics Calculation

o Compare simulated LDCT and NDCT data for
baseline metrics

o Test BM3D and Non-Local Means for denoising LDCT
synchrotron data
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* Classical approaches:
* Extensive feature extraction work

* Handcrafted filters for edge, texture, shape

* Some approaches required pre-processing
data to work

e Convolutional Neural Networks (CNNs):
* Processing done directly on raw data
* Learnfilters based on data

* Learnsimple and complex filters that —110]1
optimize target task ~1lol1
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* CNN revolutionized Computer Vision (CV)
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* Classical approaches:
* Extensive feature extraction work
* Handcrafted filters for edge, texture, shape

* Some approaches required pre-processing
data to work

e Convolutional Neural Networks (CNNs):
* Processing done directly on raw data
* Learnfilters based on data

* Learnsimple and complex filters that
optimize target task

* CNN revolutionized Computer Vision (CV)
area [5]
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« VRMSE (Root Mean Square Error) [20]

Image height

* Difference between all pixel values from

the “noise-free” image and the denoised

estimation 1 Mr 1 N_

- . X N Q

* Low RMSE value indicates high ;_[} j_

similarity between “noise-free” and

denoised estimation image Pixel value from position (i,j) in the noise-free image

Pixel value from position (i,j) in the denoised estimation

RMSE = vMSE
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» MPeak Signal-to-Noise Ratio [25]

Maximum pixel value from noise-free image

e Commonly used for assessing quality
of image reconstruction, @
compression and denoising L
algorithms PSNR = 10 X loglo @

* Ratio between the maximum possible
signalvalue (L; ) and the noise

corrupting it (MSE between I and ) M’ 1 N—
AISE= o
« MSE~>0,PSNR> © /@T N
Image height ’L—D j= D
 High PSNR indicates low degradation Pixel value from position (i,j) in the noise-free image
of the signal by the existing noise L

Pixel value from position (i,j) in the denoised estimation
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* SSIM (Structural Similarity Index SSIM(X’ y) — [Z(X? Y)w(x y)gﬁbx [S(X/Y),@
Measure) [52] Weight factors

Perception-based metric to measure
similarity between two images

Calculated by comparing the
degradation between two same size
windows taken from the same position
in the “noise-free” and the denoised
estimation image.

Evaluates three image aspects:
* I(x,y) 2 Luminance
* c¢(x,y)—> Contrast
* s(x,y)-2> Structure

Calculated as a weighted combination
of all three aspects

2z, + C
Z(X:' Y) - T o yg
M + }Ly + Cl

Standard deviation

(X y) Oz Y + CZ
@‘F J.y + CQ
Variance

Covariance
Ot G

S X y
gmg-u + C%
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* SSIM (Structural Similarity Index SSIM(X’ y) — U(X? Y)N:(X y)?x [‘S(X/Y),@
Measure) [52] Weight factors

Stabilization Variables

Quﬁ,uy + (oREen A )
,qu + [L + Cl 'Cl — (le) [

Standard deviation

 Calculated by comparing the @7? @\
degradation between two same size (;' f

* Perception-based metric to measure Z(X y)
similarity between two images

I
' |
' |
I

2 1

1Cy = (koL
windows taken from the same position 2 + 02 I 2 ) :
in the “noise-free” and the denoised I |
estimation image. Variance I :
Covariance v\<3 Q : Cy
* Evaluates three image aspects: S(X. y) — ' 2 I
 I(x,y) = Luminance Tp0y 1 C’s R '

* c¢(x,y)—> Contrast
* s(x,y)-2> Structure

* Calculated as a weighted combination
of all three aspects
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* SSIM (Structural Similarity Index
Measure) [52]

* Perception-based metric to measure
similarity between two images

* Calculated by comparing the
degradation between two same size
windows taken from the same position
in the “noise-free” and the denoised
estimation image.

* Evaluates three image aspects:
* I(x,y) 2 Luminance
* c¢(x,y)—> Contrast
* s(x,y)-2> Structure

* Calculated as a weighted combination
of all three aspects

Datasets Metrics

Structural Similarity 1

e 1 Index Measure (SSIM)
SSIM(x, ) = 16, y)fR el P 506 )P
Weight factors

Stabilization Variables
l(x,y) =

2ty +@\. """""
,ufg + }1? + Cy

Standard deviation

) - S D

2 + Oy
Variance
Covariance

SSIM authors reported | Maximum pixel value

: “fairly insensitive” |

| Variations of SSIM k, =0.01 k, =0.03

I caused by variations on j«— Small constants (K 1) with arbitrary value
! values from k; and k, I

: [52]
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SSIM(x,y) = [I(x,y)]* x [e(x,y)]” x [s(x,y)]”

* SSIM (Structural Similarity Index
Measure) [52]

* Perception-based metric to measure
similarity between two images

if L _ _
SSIM can be simplifiedas | —> & — 5 — Y =

* Calculated by comparing the
degradation between two same size
windows taken from the same position
in the “noise-free” and the denoised
estimation image.

(Q}Lm,u,y -+ Cl)(Q(TIy + Cg)
(12 + pz + Cr) (o + op + Cy)

* Evaluates three image aspects: SSIM(Xa y) —
* I(x,y) 2 Luminance
* c¢(x,y)—> Contrast
* s(x,y)-2> Structure OZ

2 _ 2
C) = (kL)? Cy=(kL)? Cy= -
* Calculated as a weighted combination

of all three aspects ki =0.01 £k, =0.03
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