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• X-Ray Computed Tomography (CT) 
offers a non-invasive technique for 
assessing internal structures of 
objects

• Applied over multiple domains:
• Medical (golden standard for trauma 

assessment [43])
• Archaeology [28]
• Paleontology [23,44]
• Material Science [50]

• Synchrotron facilities allow achieving 
higher spatial and time resolutions
if compared to conventional X-Ray 
sources [16]

Source: H
am

m
 et al. [23]

Tyrannosaurus rex left dentary 

Source: Karjalainen et al. [28]

14th Century fabric
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Plant Tissue 

https://commons.wikimedia.org/wiki/Scrollable_computed_tomography_images_of_a_normal_abdomen_and_pelvis
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• High doses of radiation may be 
harmful for health [9,40] while for 
radiation-sensitive samples it may 
cause damages to it and directly 
impact the experimental results [36]

• Development of Low-dose Computed 
Tomography (LDCT) techniques is 
crucial

• As Low As Reasonably Achievable (ALARA) 
principle

• Lower dose = lower CT image quality 
[17,49,51]

• Higher noise 
• Lower contrast

• Methods to enhance LDCT image 
quality is crucial
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• The problem can be defined as a 
Degradation/Restoration problem

• Objective: Developed a way to restore the 
image as similar as possible to the original
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Source: Bushberg
et al. [9]

Source: Bushberg
et al. [9]
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Source: Bushberg
et al. [9]

Source: Bushberg
et al. [9]

• The problem can be defined as a 
Degradation/Restoration problem

• Objective: Developed a way to restore the 
image as similar as possible to the original

• CT images are susceptible to various 
sources of noise [9]:

• Grain noise
• Quantum noise
• Anatomical noise
• Structure noise
• Electronic noise

• Low-dose exposure worsens image quality
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• Solutions are typically classified as [36, 42]:
• Raw data filtering
• Iterative reconstruction
• Post-processing algorithms

Classical/Non-Learning CNN-based GAN-based Diffusion-based

• The problem can be defined as a 
Degradation/Restoration problem

• Objective: Developed a way to restore the 
image as similar as possible to the original
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• Solutions are typically classified as [36, 42]:
• Raw data filtering
• Iterative reconstruction
• Post-processing algorithms

1. Performance 
requires

improvement 
[17, 56]

Classical/Non-Learning CNN-based GAN-based Diffusion-based

Source: G
onzales R. C

. and W
oods R. E. [20]

• The problem can be defined as a 
Degradation/Restoration problem

• Objective: Developed a way to restore the 
image as similar as possible to the original
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• Solutions are typically classified as [36, 42]:
• Raw data filtering
• Iterative reconstruction
• Post-processing algorithms

Classical/Non-Learning CNN-based GAN-based Diffusion-based

Source: G
onzales R. C

. and W
oods R. E. [20]

1. Performance 
requires

improvement 
[17, 56]

1. Good Performance
2. Causes over-smoothing

3. Poor generalization
for unseen dose levels

[17 ,18]

• The problem can be defined as a 
Degradation/Restoration problem

• Objective: Developed a way to restore the 
image as similar as possible to the original
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• Solutions are typically classified as [36, 42]:
• Raw data filtering
• Iterative reconstruction
• Post-processing algorithms

Classical/Non-Learning CNN-based GAN-based Diffusion-based

Source: G
onzales R. C

. and W
oods R. E. [20]

1. Performance 
requires

improvement 
[17, 56]

1. Better detail preservation
2. Better generalization

3. Unstable train
4. Value shift

[17, 18]

1. Good Performance
2. Causes over-smoothing

3. Poor generalization
for unseen dose levels

[17 ,18]

• The problem can be defined as a 
Degradation/Restoration problem

• Objective: Developed a way to restore the 
image as similar as possible to the original
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• Solutions are typically classified as [36, 42]:
• Raw data filtering
• Iterative reconstruction
• Post-processing algorithms

1. Performance 
requires

improvement 
[17, 56]

1. Promising results for denoising in other 
domains when compared to CNN and GANS

2. Already explored for LDCT [17,18,35, 56]
3. Not extensively explored yet

4. Never applied to synchrotron LDCT 
denoising

Classical/Non-Learning CNN-based GAN-based Diffusion-based

Source: G
onzales R. C

. and W
oods R. E. [20]

1. Better detail preservation
2. Better generalization

3. Unstable train
4. Value shift

[17, 18]

1. Good Performance
2. Causes over-smoothing

3. Poor generalization
for unseen dose levels

[17 ,18]

• The problem can be defined as a 
Degradation/Restoration problem

• Objective: Developed a way to restore the 
image as similar as possible to the original
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CNN-based GAN-based Diffusion-based

NDCT

RED-CNN

*Images source: Gao Q. et al. [17]

PDF-RED-CNN

WGAN-VGG

DU-GAN

CoreDiff-10

CoreDiff+OSLu -10



Can diffusion models perform denoising tasks on LDCT reconstructed data 
toward increasing the quality of synchrotron LDCT?

Can diffusion models trained over CT medical images be directly 
repurposed to perform denoising tasks on LDCT synchrotron images?

Does finetunning a model trained over CT medical images with synchrotron CT 
images enhances the acquired results?
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Introduction

Evaluate diffusion-based generative models for denoising synchrotron LDCT

Assess the generalization of diffusion models trained on medical LDCT images 
for denoising synchrotron LDCT images

Contribute with a methodology based on diffusion generative models for 
enhancing synchrotron LDCT image quality

Explore taking advantage of medical LDCT datasets to train models to be used 
over synchrotron LDCT images
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• Radiation is “energy that travels through 
space or matter” [9]

• Due to the “wave-particle duality” from 
quantum mechanics EM can be described 
as both waves and particles called photon

• Characterized by:
• Wavelength (λ)
• Frequency (ѵ)
• Energy (Ε)

• Divided in groups according to those 
characteristics

• Ionization may occur when photon
interacts with molecules/atom 
depending on:

• Photon energy
• Target molecule/atom
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Eletromagnetic
Radiation (EM)

• Radiation is “energy that travels through 
space or matter” [9]

• Due to the “wave-particle duality” from 
quantum mechanics EM can be described 
as both waves and particles called photon

• Characterized by:
• Wavelength (λ)
• Frequency (ѵ)
• Energy (Ε)

• Divided in groups according to those 
characteristics

• Ionization may occur when photon
interacts with molecules/atom 
depending on:

• Photon energy
• Target molecule/atom
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• Types of interaction between EM 
radiation and matter [9]:

• Rayleigh Scattering
• Compton Scattering
• Photoelectric Absorption 
• Pair Production (Only on high-energies)

Rayleight Scattering Compton Scattering

Photoelectric Absorption Pair Production
Source: Bushberg et al. [9]
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• Types of interaction between EM 
radiation and matter [9]:

• Rayleigh Scattering
• Compton Scattering
• Photoelectric Absorption 
• Pair Production (Only on high-energies)

Rayleight Scattering Compton Scattering

Photoelectric Absorption Pair Production
Source: Bushberg et al. [9]

Combined occurrence

EM Attenuation

Varies with material
composition and thickness

EM Attenuation can be defined as a
Proportion of atoms per volume [9]

18
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• Types of interaction between EM 
radiation and matter [9]:

• Rayleigh Scattering
• Compton Scattering
• Photoelectric Absorption 
• Pair Production (Only on high-energies)

Combined occurrence

EM Attenuation

Varies with material
composition and thickness

EM Attenuation can be defined as a
Proportion of atoms per volume [9]

Material density

19
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• Types of interaction between EM 
radiation and matter [9]:

• Rayleigh Scattering
• Compton Scattering
• Photoelectric Absorption 
• Pair Production (Only on high-energies)

Combined occurrence

EM Attenuation

Varies with material
composition and thickness

EM Attenuation can be defined as a
Proportion of atoms per volume [9]

Material density

Source: Bushberg et al. [9]
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Irradiated material mass

Very simplified way to calculate,  as it don’t consider:
• Poly-energetic behavior of the radiation source
• Material heterogeneity and morphology
• Radiation-matter interaction variation
• Scattering causing re-interaction
• Surroundings

High complexity on precisely calculating dose

Due to that complexity, dose calculation varies 
depending on application

Radiation effectiveness on causing 
biological damage

Material sensitivity

23

Radiation Dose

• Radiation dose is the energy deposited 
in the irradiated material [9]

• Fluence (φ) and flux (ψ)
• Synchrotron facilities have a higher flux 

than medical X-Ray sources

• Absorbed Dose (D)

• Radiation protection and Medical 
Imaging application commonly uses:

• Equivalent Dose (H)
• Adds a weighting factor based on the 

radiation type
• Effective Dose (𝐸𝑑𝑜𝑠𝑒)

• Adds a weighting factor based on 
each material being irradiated



Goals and 
Expected 

Results
MotivationProblem 
Definition
Research 
QuestionsIntroduction

Literature
Review

Materials 
and

Methods

Work Plan 
and 

Execution 
Timeline

Physics 
Concepts

Computation
Concepts

Related 
Work

X-Ray Computed 
Tomography (CT)

24

Source: G
onzales R. C

. and W
oods R. E. [20]
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line staff 

• X-Ray Computer Tomography can be 
summarized in two stages acquisition 
and reconstruction [31 , 36]

• Acquisition: Capture 2D transmission 
projection images of an object from 
various angles around a common axis

• Reconstruction: Apply a computational 
reconstruction method to restore object's 
3D morphology 
o Inverse problem
o Different object may cause same 

projection

• The more acquired projections the better 
the reconstruction
o In theory, with ∞ projections, it 

would be possible to invert the 
Radon transform exactly

Source: W
ikipedia

Acquisition

Reconstruction

Source: G
onzales R. C

. and W
oods R. E. [20]

X-Ray

X-Ray

https://en.wikipedia.org/wiki/Radon_transform


Goals and 
Expected 

Results
MotivationProblem 
Definition
Research 
QuestionsIntroduction

Literature
Review

Materials 
and

Methods

Work Plan 
and 

Execution 
Timeline

Physics 
Concepts

Computation
Concepts

Related 
Work

X-Ray Computed 
Tomography (CT)

25

Source: "La Découverte de l’ombre" (Roberto Casati)

1 2

4 32 64

Source: Gonzales R. C. and Woods R. E. [20]

• X-Ray Computer Tomography can be 
summarized in two stages acquisition 
and reconstruction [31 , 36]

• Acquisition: Capture 2D transmission 
projection images of an object from 
various angles around a common axis

• Reconstruction: Apply a computational 
reconstruction method to restore object's 
3D morphology 
o Inverse problem
o Different object may cause same 

projection

• The more acquired projections the better 
the reconstruction
o In theory, with ∞ projections, it 

would be possible to invert the 
Radon transform exactly
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• According to Bushberg et al. [9], CT image quality 
is strongly bounded to:

• Spatial Resolution 
• Contrast Resolution
• Temporal Resolution

• Spatial Resolution:
• Ability to distinguish two objects of 

different densities
• Determines edge sharpness and detail 

clarity
• Related to how much of real space is 

represented by a pixel/voxel

• Contrast Resolution:
• Ability to differentiate objects with similar 

densities using grayscale values
• Emphasizes distinction between similarly 

shaded objects

• Temporal Resolution:
• How long CT image acquisition takes
• Crucial for imaging moving objects

26

Source: Bushberg
et al. [9]

Source: Bushberg
et al. [9]
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27

• Discriminative Models:
• Learn a function capable of defining 

boundaries that distinguish which class a 
sample fits

• Generative Models :
• Learn how to transform a latent space 

variable (z) into a data space variable (x)

• Conditioned Generative Models :
• The same as generative models but 

condition the transformation to guide the 
transformation
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• Discriminative Models:
• Learn a function capable of defining 

boundaries that distinguish which class a 
sample fits

• Generative Models :
• Learn how to transform a latent space 

variable (z) into a data space variable (x)

• Conditioned Generative Models :
• The same as generative models but 

condition the transformation to guide the 
transformation

• Learning to map latent space variables (z) 
to data space variables (x) is the core 
idea of many generative models.
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• Generative Adversarial Networks (GANS) [21] 
• Generator

▪ Generate realistic samples by 
transforming data from latent space 
p(z) to samples from data space p(x)

• Discriminator
▪ Distinguish fake and real samples 

• Adversarial training:
• Shared loss between models
• Discriminator → Minimizes the error
• Generator → Maximizes the error
• Force both models to improve iteratively

• Training GANs can be challenging
• Model collapse: Generator map p(z) to only a 

subgroup of p(x)
• No clear progression metric

• Wasserstein Generative Adversarial Network 
(WGAN) [37]

• More stability
• Ensure the generator is Moving toward the 

desired distribution
• Meaningful loss to show training progression

Source: Bishop and Bishop [5]

Source: N
akazato

and Ito ***

Wasserstein distance
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Source: Bishop and Bishop [5]

Noise add each step

Noise distribution variance on step t

• Diffusion models [46] typically involve two 
stages:

• Forward encoder
▪ Gradually corrupts input data by 

adding noise to it
▪ After several steps input data is 

transformed on a known noise-like 
distribution
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Source: Bishop and Bishop [5]

Increase each step

Both coefficients ensures 
that, for each step, mean and

variance  of 𝒛𝑡 gets closer 0 and to 𝐈

Noise add each step

Noise distribution variance on step t

For 𝑇 → ∞, β𝑇 → 1 and 𝑧𝑇 would be a variable within 
the prior defined noise distribution 𝑁(0, 𝐈)

• Diffusion models [46] typically involve two 
stages:

• Forward encoder
▪ Gradually corrupts input data by 

adding noise to it
▪ After several steps input data is 

transformed on a known noise-like 
distribution
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Models
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Source: Bishop and Bishop [5]

• Reverse decoder
▪ Progressively denoise the data to 

reconstruct
▪ p(x) is  unknown!
▪ Often parametrized by a Neural 

Network

Reverting each step should be easier as the distance 
between 𝑞(𝒛𝑡−1) and 𝑞 𝒛 distributions would be narrower

• ↑ Inference time
• ↓ shift between ො𝑥 and x

• ↓ Inference time
• ↑ shift between ො𝑥 and x

↑ 𝑇 →

↓ 𝑇 →
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Source: D
abov

et al. [13]

BM3D

Source: N
O

BU
G

S 2024

Non-Learning 
Classical Methods

• Non-Learning Classical Methods
• Non-Local Means [8]
• Block-Matching and 3D Filtering [13]

• CNN-based Methods
• RED-CNN [12]

• GAN-based Methods
• WGAN-VGG [57]
• DU-GAN [27]

• Diffusion-based Methods
• Cold Diffusion [2]
• DDPM [56]
• Contextual Conditional Diffusion model 

(CoCoDiff) [18]
• Denoising with Diffusion Prior (Dn-Dp) [35]
• Contextual Error-modulated Generalized 

Diffusion Mode (CoreDiff) [17]

https://indico.esrf.fr/event/114/book-of-abstracts.pdf
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Source: C
hen et al. [12]

RED-CNN

Skip connections

CNN-based Methods

• Non-Learning Classical Methods
• Non-Local Means [8]
• Block-Matching and 3D Filtering [13]

• CNN-based Methods
• RED-CNN [12]

• GAN-based Methods
• WGAN-VGG [57]
• DU-GAN [27]

• Diffusion-based Methods
• Cold Diffusion [2]
• DDPM [56]
• Contextual Conditional Diffusion model 

(CoCoDiff) [18]
• Denoising with Diffusion Prior (Dn-Dp) [35]
• Contextual Error-modulated Generalized 

Diffusion Mode (CoreDiff) [17]
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Source: Yang et al. [57]

WGAN-VGG

DU-GAN

Source: H
uang et al. [27]

GAN-based Methods

• Non-Learning Classical Methods
• Non-Local Means [8]
• Block-Matching and 3D Filtering [13]

• CNN-based Methods
• RED-CNN [12]

• GAN-based Methods
• WGAN-VGG [57]
• DU-GAN [27]

• Diffusion-based Methods
• Cold Diffusion [2]
• DDPM [56]
• Contextual Conditional Diffusion model 

(CoCoDiff) [18]
• Denoising with Diffusion Prior (Dn-Dp) [35]
• Contextual Error-modulated Generalized 

Diffusion Mode (CoreDiff) [17]
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Diffusion-based 
Methods

ColdDiffusion

Source: Bansal et al. [2]

• Non-Learning Classical Methods
• Non-Local Means [8]
• Block-Matching and 3D Filtering [13]

• CNN-based Methods
• RED-CNN [12]

• GAN-based Methods
• WGAN-VGG [57]
• DU-GAN [27]

• Diffusion-based Methods
• Cold Diffusion [2]
• DDPM [56]
• Contextual Conditional Diffusion model 

(CoCoDiff) [18]
• Denoising with Diffusion Prior (Dn-Dp) [35]
• Contextual Error-modulated Generalized 

Diffusion Mode (CoreDiff) [17]
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Diffusion-based 
Methods

CoCoDiff

CoreDiff

Source: G
ao and Shan [18]

Source: G
ao et al. [17]

• Non-Learning Classical Methods
• Non-Local Means [8]
• Block-Matching and 3D Filtering [13]

• CNN-based Methods
• RED-CNN [12]

• GAN-based Methods
• WGAN-VGG [57]
• DU-GAN [27]

• Diffusion-based Methods
• Cold Diffusion [2]
• DDPM [56]
• Contextual Conditional Diffusion model 

(CoCoDiff) [18]
• Denoising with Diffusion Prior (Dn-Dp) [35]
• Contextual Error-modulated Generalized 

Diffusion Mode (CoreDiff) [17]
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Medical Datasets

Low Dose CT Image 
and Projection Dataset

[11, 38]

2016 Low Dose CT 
Grand Challenge 

Dataset
[39]

Lung Image Database 
Consortium Image 

Collection
(LIDC-IDRI)

[1]

Low-Dose Parallel 
Beam X-Ray Computed 

Tomography dataset
(LoDoPab-CT)

[34]

Synchrotron Datasets

X-Ray Tomography Data 
Bank 

(TomoBank)
[14]

Sirius images provided 
by internal researches

Subset of Subset of

299 CT scans 1018 Helical CT scans
A repository of some 

public experimental data possibility

• Number of Medical CT scans 
available is much higher than 
synchrotron CT scans!

• Low-dose data are simulated
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Root Mean Square Error [20]

Peak Signal-to-Noise Ratio [25]

Structural Similarity Index Measure [52]
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• Methodology was divided into 5 stages:

• Stage 1: Dataset Preparation
o Simulate LDCT data for a range of different dose 

levels using the algorithm proposed by Yu et al. [58]
o Train/Test set split

• Stage 2: Baseline Metrics Calculation
o Compare simulated LDCT and NDCT data for 

baseline metrics
o Test BM3D and Non-Local Means for denoising LDCT 

synchrotron data

• Stage 3: Experiment 1
o Train and Test CoreDiff over synchrotron data

• Stage 4: Experiment 2
o Train CoreDiff over Medical data and test it over 

synchrotron data

• Stage 5: Experiment 3
o Train CoreDiff over Medical data, finetune it using 

synchrotron data and test it over synchrotron data
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• Methodology was divided into 5 stages:

• Stage 1: Dataset Preparation
o Simulate LDCT data for a range of different dose 

levels using the algorithm proposed by Yu et al. [58]
o Train/Test set split

• Stage 2: Baseline Metrics Calculation
o Compare simulated LDCT and NDCT data for 

baseline metrics
o Test BM3D and Non-Local Means for denoising LDCT 

synchrotron data

• Stage 3: Experiment 1
o Train and Test CoreDiff over synchrotron data

• Stage 4: Experiment 2
o Train CoreDiff over Medical data and test it over 

synchrotron data

• Stage 5: Experiment 3
o Train CoreDiff over Medical data, finetune it using 

synchrotron data and test it over synchrotron data
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• Methodology was divided into 5 stages:

• Stage 1: Dataset Preparation
o Simulate LDCT data for a range of different dose 

levels using the algorithm proposed by Yu et al. [58]
o Train/Test set split

• Stage 2: Baseline Metrics Calculation
o Compare simulated LDCT and NDCT data for 

baseline metrics
o Test BM3D and Non-Local Means for denoising LDCT 

synchrotron data

• Stage 3: Experiment 1
o Train and Test CoreDiff over synchrotron data

• Stage 4: Experiment 2
o Train CoreDiff over Medical data and test it over 

synchrotron data

• Stage 5: Experiment 3
o Train CoreDiff over Medical data, finetune it using 

synchrotron data and test it over synchrotron data
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NDCT LDCT

• Methodology was divided into 5 stages:

• Stage 1: Dataset Preparation
o Simulate LDCT data for a range of different dose 

levels using the algorithm proposed by Yu et al. [58]
o Train/Test set split

• Stage 2: Baseline Metrics Calculation
o Compare simulated LDCT and NDCT data for 

baseline metrics
o Test BM3D and Non-Local Means for denoising LDCT 

synchrotron data

• Stage 3: Experiment 1
o Train and Test CoreDiff over synchrotron data

• Stage 4: Experiment 2
o Train CoreDiff over Medical data and test it over 

synchrotron data

• Stage 5: Experiment 3
o Train CoreDiff over Medical data, finetune it using 

synchrotron data and test it over synchrotron data



Physics 
Concepts

Computation
Concepts

MotivationProblem 
Definition

Research 
Questions

Expected 
ResultsIntroduction

Literature
Review

Materials 
and

Methods

44

Work Plan 
and 

Execution 
Timeline

Datasets Metrics Methodology

NDCT LDCT

• Methodology was divided into 5 stages:

• Stage 1: Dataset Preparation
o Simulate LDCT data for a range of different dose 

levels using the algorithm proposed by Yu et al. [58]
o Train/Test set split

• Stage 2: Baseline Metrics Calculation
o Compare simulated LDCT and NDCT data for 

baseline metrics
o Test BM3D and Non-Local Means for denoising LDCT 

synchrotron data

• Stage 3: Experiment 1
o Train and Test CoreDiff over synchrotron data

• Stage 4: Experiment 2
o Train CoreDiff over Medical data and test it over 

synchrotron data

• Stage 5: Experiment 3
o Train CoreDiff over Medical data, finetune it using 

synchrotron data and test it over synchrotron data
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NDCT LDCT

• Methodology was divided into 5 stages:

• Stage 1: Dataset Preparation
o Simulate LDCT data for a range of different dose 

levels using the algorithm proposed by Yu et al. [58]
o Train/Test set split

• Stage 2: Baseline Metrics Calculation
o Compare simulated LDCT and NDCT data for 

baseline metrics
o Test BM3D and Non-Local Means for denoising LDCT 

synchrotron data

• Stage 3: Experiment 1
o Train and Test CoreDiff over synchrotron data

• Stage 4: Experiment 2
o Train CoreDiff over Medical data and test it over 

synchrotron data

• Stage 5: Experiment 3
o Train CoreDiff over Medical data, finetune it using 

synchrotron data and test it over synchrotron data
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• Methodology was divided into 5 stages:

• Stage 1: Dataset Preparation
o Simulate LDCT data for a range of different dose 

levels using the algorithm proposed by Yu et al. [58]
o Train/Test set split

• Stage 2: Baseline Metrics Calculation
o Compare simulated LDCT and NDCT data for 

baseline metrics
o Test BM3D and Non-Local Means for denoising LDCT 

synchrotron data

• Stage 3: Experiment 1
o Train and Test CoreDiff over synchrotron data

• Stage 4: Experiment 2
o Train CoreDiff over Medical data and test it over 

synchrotron data

• Stage 5: Experiment 3
o Train CoreDiff over Medical data, finetune it using 

synchrotron data and test it over synchrotron data

NDCT LDCT
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A. Literature review

B. Proposal writing and realization of the 
qualification exam

C. Dataset preparation

D. Baseline metric calculation

E. Experiments execution and results 
comparison

F. Results documentation and publishing

G. Dissertation writing and defense
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*Images Source: Bishop and Bishop [5]

• Classical approaches:
• Extensive feature extraction work
• Handcrafted filters for edge, texture, shape 
• Some approaches required pre-processing 

data to work

• Convolutional Neural Networks (CNNs):
• Processing done directly on raw data
• Learn filters based on data
• Learn simple and complex filters that 

optimize target task

• CNN revolutionized Computer Vision (CV) 
area [5]

• It is also extensively used for other data 
dimension applications such as time 
series, 3D images and videos [5]
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• Classical approaches:
• Extensive feature extraction work
• Handcrafted filters for edge, texture, shape 
• Some approaches required pre-processing 

data to work

• Convolutional Neural Networks (CNNs):
• Processing done directly on raw data
• Learn filters based on data
• Learn simple and complex filters that 

optimize target task

• CNN revolutionized Computer Vision (CV) 
area [5]

• It is also extensively used for other data 
dimension applications such as time 
series, 3D images and vídeos [5]

Source: https://adam
harley.com

/nn_vis/cnn/2d.htm
l

https://adamharley.com/nn_vis/cnn/2d.html
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Work Plan 
and 

Execution 
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Datasets Metrics Methodology Root Mean Square Error 
(RMSE)

• ↓RMSE (Root Mean Square Error) [20]

• Difference between all pixel values from 
the “noise-free” image and the denoised 
estimation

• Low RMSE value indicates high 
similarity between “noise-free” and 
denoised estimation image

Image height Image width

Pixel value from position (i,j) in the noise-free image

Pixel value from position (i,j) in the denoised estimation
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Work Plan 
and 

Execution 
Timeline

Datasets Metrics Methodology Peak Signal-to-Noise 
Rate (PSNR)

• ↑Peak Signal-to-Noise Ratio [25]

• Commonly used for assessing quality 
of image reconstruction, 
compression and denoising 
algorithms

• Ratio between the maximum possible 
signal value (𝐿 መ𝐼 ) and the noise 
corrupting it (MSE between 𝐼 and መ𝐼)

• 𝑀𝑆𝐸 → 0 ,𝑃𝑆𝑁𝑅 → ∞

• High PSNR indicates low degradation 
of the signal by the existing noise

Maximum pixel value from noise-free image

Image height

Image width Pixel value from position (i,j) in the noise-free image

Pixel value from position (i,j) in the denoised estimation
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• SSIM (Structural Similarity Index 
Measure) [52]

• Perception-based metric to measure 
similarity between two images

• Calculated by comparing the 
degradation between two same size 
windows taken from the same position 
in the “noise-free” and the denoised 
estimation image.

• Evaluates three image aspects:
• 𝑙 𝒙, 𝒚 → Luminance
• 𝑐 𝒙, 𝒚 →Contrast
• 𝑠(𝒙, 𝒚)→ Structure

• Calculated as a weighted combination
of all three aspects

Weight factorsMean pixel intensity

Standard deviation

Variance
Covariance
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Stabilization Variables

Physics 
Concepts

Computation
Concepts

MotivationProblem 
Definition

Research 
Questions

Expected 
ResultsIntroduction

Literature
Review

Materials 
and

Methods

Work Plan 
and 

Execution 
Timeline

Datasets Metrics Methodology Structural Similarity 
Index Measure (SSIM)

• SSIM (Structural Similarity Index 
Measure) [52]

• Perception-based metric to measure 
similarity between two images

• Calculated by comparing the 
degradation between two same size 
windows taken from the same position 
in the “noise-free” and the denoised 
estimation image.

• Evaluates three image aspects:
• 𝑙 𝒙, 𝒚 → Luminance
• 𝑐 𝒙, 𝒚 →Contrast
• 𝑠(𝒙, 𝒚)→ Structure

• Calculated as a weighted combination
of all three aspects
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Stabilization Variables

Maximum pixel value

𝑘1 = 0.01 𝑘2 = 0.03
Small constants (≪ 1) with arbitrary value

SSIM authors reported 
“fairly insensitive” 
variations of SSIM 

caused by variations on
values from 𝑘1 and 𝑘2

[52]
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• SSIM (Structural Similarity Index 
Measure) [52]

• Perception-based metric to measure 
similarity between two images

• Calculated by comparing the 
degradation between two same size 
windows taken from the same position 
in the “noise-free” and the denoised 
estimation image.

• Evaluates three image aspects:
• 𝑙 𝒙, 𝒚 → Luminance
• 𝑐 𝒙, 𝒚 →Contrast
• 𝑠(𝒙, 𝒚)→ Structure

• Calculated as a weighted combination
of all three aspects
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SSIM can be simplified as

𝑘1 = 0.01 𝑘2 = 0.03

if
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• SSIM (Structural Similarity Index 
Measure) [52]

• Perception-based metric to measure 
similarity between two images

• Calculated by comparing the 
degradation between two same size 
windows taken from the same position 
in the “noise-free” and the denoised 
estimation image.

• Evaluates three image aspects:
• 𝑙 𝒙, 𝒚 → Luminance
• 𝑐 𝒙, 𝒚 →Contrast
• 𝑠(𝒙, 𝒚)→ Structure

• Calculated as a weighted combination
of all three aspects
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