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I. Using the Mosel language



Introduction

‘Mosel’ is not an acronym. It is pronounced like the German river, mo-zul. It is an advanced
modeling and solving language and environment, where optimization problems can be speci-
fied and solved with the utmost precision and clarity.

Here are some of the features of Mosel

• Mosel’s easy syntax is regular and described formally in the reference manual.

• Mosel supports dynamic objects, which do not require pre-sizing. For instance, you do
not have to specify the maximum sizes of the indices of a variable x.

• Mosel models are pre-compiled. Mosel compiles a model into a binary file which can be
run on any computer platform, and which hides the intellectual property in the model if
so required.

• Mosel is embeddable. There is a runtime library which can be called from your favorite
programming language if required. You can access any of the model’s objects from your
programming language.

• Mosel is easily extended through the concept of modules It is possible to write a set of
functions, which together stand alone as a module. Several modules are supplied by
Dash, including the Xpress-MP Optimizer.

• Support for user-written functions and procedures is provided.

• The use of sets of objects is supported.

• Constraints and variables etc. can be added incrementally. For instance, column genera-
tion can depend on the results of previous optimizations, so sub problems are supported

The modeling component of Mosel provides you with an easy to use yet powerful language
for describing your problem. It enables you to gather the problem data from text files and
a range of popular spreadsheets and databases, and gives you access to a variety of solvers,
which can find optimal or near-optimal solutions to your model.

What you need to know before using Mosel

Before using Mosel you should be comfortable with the use of symbols such as x or y to rep-
resent unknown quantities, and the use of this sort of variable in simple linear equations and
inequalities, for example:

x + y ≤ 6

Experience of a basic course in Mathematical or Linear Programming is worthwhile, but is not
essential. Similarly some familiarity with the use of computers would be helpful.

For all but the simplest models you should also be familiar with the idea of summing over a
range of variables. For example, if producej is used to represent the number of cars produced
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on production line j then the total number of cars produced on all N production lines can be
written as:

N∑
j=1

producej

This says ‘sum the output from each production line producej over all production lines j from
j = 1 to j = N’.

If our target is to produce at least 1000 cars in total then we would write the inequality:

N∑
j=1

producej ≥ 1000

We often also use a set notation for the sums. Assuming that LINES is the set of production
lines {1, . . , N}, we may write equivalently:∑

j∈LINES

producej ≥ 1000

This may be read ‘sum the output from each production line producej over all production lines
j in the set LINES’.

Other common mathematical symbols that are used in the text are IN (the set of non-negative
integer numbers {0, 1, 2, . . . }), ∩ and ∪ (intersection and union of sets), ∧ and ∨ (logical ‘and’
and ‘or’), the all-quantifier ∀ (read ‘for all’), and ∃ (read ‘exists’).

Mosel closely mimics the mathematical notation an analyst uses to describe a problem. So
provided you are happy using the above mathematical notation the step to using a modeling
language will be straightforward.

Symbols and conventions

We have used the following conventions within this guide:

• Mathematical objects are presented in italics.

• Examples of commands, models and their output are printed in a Courier font . File-
names are given in lower case Courier.

• Decision variables have lower case names; in the most example problems these are verbs
(such as use, take).

• Constraint names start with an upper case letter, followed by mostly lower case (e.g.
Profit, TotalCost).

• Data (arrays and sets) and constants are written entirely with upper case (e.g. DEMAND,
COST , ITEMS).

• The vertical bar symbol | is found on many keyboards as a vertical line with a small gap in
the middle, but often confusingly displays on-screen without the small gap. In the UNIX
world it is referred to as the pipe symbol. (Note that this symbol is not the same as the
character sometimes used to draw boxes on a PC screen.) In ASCII, the | symbol is 7C in
hexadecimal, 124 in decimal.
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The structure of this guide

This user guide is structured into these main parts

• Part I describes the use of Mosel for people who want to build and solve Mathematical
Programming (MP) problems. These will typically be Linear Programming (LP), Mixed
Integer Programming (MIP), or Quadratic Programming (QP) problems. The part has been
designed to show the modeling aspects of Mosel, omitting most of the more advanced
programming constructs.

• Part II is designed to help those users who want to use the powerful programming lan-
guage facilities of Mosel, using Mosel as a modeling, solving and programming environ-
ment. Items covered include looping (with examples), more about using sets, producing
nicely formatted output, functions and procedures. We also give some advanced MP ex-
amples, including Branch-and-Cut, column generation, Goal Programming and Successive
Linear Programming.

• Part III shows how Mosel models can be embedded into large applications using program-
ming languages like C, Java, or Visual Basic.

This user guide is deliberately informal and is not complete. It must be read in conjunction
with the Mosel reference manual, where features are described precisely and completely.
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Chapter 1

Getting started with Mosel

In this chapter we will take you through a very small manufacturing example to illustrate the
basic building blocks of Mosel.

Models are entered into a Mosel file using a standard text editor (do not use a word processor
as an editor as this may not produce an ASCII file). If you have access to Windows, Xpress-IVE
is the model development environment to use. The Mosel file is then loaded into Mosel, and
compiled. Finally, the compiled file can be run. This chapter will show the stages in action.

1.1 The chess set problem: description

To illustrate the model development and solving process we shall take a very small example.

A joinery makes two different sizes of boxwood chess sets. The smaller size requires 3 hours
of machining on a lathe and the larger only requires 2 hours, because it is less intricate. There
are four lathes with skilled operators who each work a 40 hour week. The smaller chess set
requires 1 kg of boxwood and the larger set requires 3 kg. However boxwood is scarce and
only 200 kg per week can be obtained.

When sold, each of the large chess sets yields a profit of $20, and one of the small chess set
has a profit of $5. The problem is to decide how many sets of each kind should be made each
week to maximize profit.

1.1.1 A first formulation

Within limits, the joinery can vary the number of large and small chess sets produced: there
are thus two decision variables (or simply variables) in our model, one decision variable per
product. We shall give these variables abbreviated names:

small : the number of small chess sets to make
large : the number of large chess sets to make

The number of large and small chess sets we should produce to achieve the maximum contri-
bution to profit is determined by the optimization process. In other words, we look to the
optimizer to tell us the best values of small, and large.

The values which small and large can take will always be constrained by some physical or
technological limits: they may be constrained to be equal to, less than or greater than some
constant. In our case we note that the joinery has a maximum of 160 hours of machine time
available per week. Three hours are needed to produce each small chess set and two hours are
needed to produce each large set. So the number of hours of machine time actually used each
week is 3 · small + 2 · large. One constraint is thus:

3 · small + 2 · large ≤ 160 (lathe-hours)
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which restricts the allowable combinations of small and large chess sets to those that do not
exceed the lathe-hours available.

In addition, only 200 kg of boxwood is available each week. Since small sets use 1 kg for every
set made, against 3 kg needed to make a large set, a second constraint is:

1 · small + 3 · large ≤ 200 (kg of boxwood)

where the left hand side of the inequality is the amount of boxwood we are planning to use
and the right hand side is the amount available.

The joinery cannot produce a negative number of chess sets, so two further non-negativity
constraints are:

small ≥ 0

large ≥ 0

In a similar way, we can write down an expression for the total profit. Recall that for each of
the large chess sets we make and sell we get a profit of $20, and one of the small chess set
gives us a profit of $5. The total profit is the sum of the individual profits from making and
selling the small small sets and the large large sets, i.e.

Profit = 5 · small + 20 · large

Profit is the objective function, a linear function which is to be optimized, that is, maximized.
In this case it involves all of the decision variables but sometimes it involves just a subset of
the decision variables. In maximization problems the objective function usually represents
profit, turnover, output, sales, market share, employment levels or other ‘good things’. In
minimization problems the objective function describes things like total costs, disruption to
services due to breakdowns, or other less desirable process outcomes.

The collection of variables, constraints and objective function that we have defined are our
model. It has the form of a Linear Programming problem: all constraints are linear equations
or inequalities, the objective function also is a linear expression, and the variables may take
any non-negative real value.

1.2 Solving the chess set problem

1.2.1 Building the model

The Chess Set problem can be solved easily using Mosel. The first stage is to get the model we
have just developed into the syntax of the Mosel language. Remember that we use the nota-
tion that items in italics (for example, small) are the mathematical variables. The corresponding
Mosel variables will be the same name in non-italic courier (for example, small ).

We illustrate this simple example by using the command line version of Mosel. The model can
be entered into a file named, perhaps, chess.mos as follows:

model "Chess"
declarations

small: mpvar ! Number of small chess sets to make
large: mpvar ! Number of large chess sets to make

end-declarations

Profit:= 5*small + 20*large ! Objective function
Lathe:= 3*small + 2*large <= 160 ! Lathe-hours
Boxwood:= small + 3*large <= 200 ! kg of boxwood

end-model

Indentations are purely for clarity. The symbol ! signifies the start of a comment, which
continues to the end of the line. Comments over multiple lines start with (! and terminate
with !) .
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Notice that the character ‘* ’ is used to denote multiplication of the decision variables by the
units of machine time and wood that one unit of each uses in the Lathe and Boxwood con-
straints.

The modeling language distinguishes between upper and lower case, so Small would be rec-
ognized as different from small .

Let’s see what this all means.

A model is enclosed in a model / end-model block.

The decision variables are declared as such in the declarations / end-declarations block.
Every decision variable must be declared. LP, MIP and QP variables are of type mpvar . Several
decision variables can be declared on the same line, so

declarations
small, large: mpvar

end-declarations

is exactly equivalent to what we first did. By default, Mosel assumes that all mpvar variables
are constrained to be non-negative unless it is informed otherwise, so there is no need to
specify non-negativity constraints on variables.

Here is an example of a constraint:

Lathe:= 3*small + 2*large <= 160

The name of the constraint is Lathe . The actual constraint then follows. If the ‘constraint’ is
unconstrained (for example, it might be an objective function), then there is no <=, >= or =
part.

In Mosel you enter the entire model before starting to compile and run it. Any errors will
be signaled when you try to compile the model, or later when you run it (see Chapter 6 on
correcting syntax errors).

1.2.2 Obtaining a solution using Mosel

So far, we have just specified a model to Mosel. Next we shall try to solve it. The first thing to
do is to specify to Mosel that it is to use Xpress-Optimizer to solve the problem. Then, assuming
we can solve the problem, we want to print out the optimum values of the decision variables,
small and large , and the value of the objective function. The model becomes

model "Chess 2"
uses "mmxprs" ! We shall use Xpress-Optimizer

declarations
small,large: mpvar ! Decision variables: produced quantities

end-declarations

Profit:= 5*small + 20*large ! Objective function
Lathe:= 3*small + 2*large <= 160 ! Lathe-hours
Boxwood:= small + 3*large <= 200 ! kg of boxwood

maximize(Profit) ! Solve the problem

writeln("Make ", getsol(small), " small sets")
writeln("Make ", getsol(large), " large sets")
writeln("Best profit is ", getobjval)

end-model

The line

uses "mmxprs"

tells Mosel that Xpress-Optimizer will be used to solve the LP. The Mosel modules mmxprs
module provides us with such things as maximization, handling bases etc.
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The line

maximize(Profit)

tells Mosel to maximize the objective function called Profit .

More complicated are the writeln statements, though it is actually quite easy to see what
they do. If some text is in quotation marks, then it is written literally. getsol and getobjval
are special Mosel functions that return respectively the optimal value of the argument, and
the optimal objective function value. writeln writes a line terminator after writing all its
arguments (to continue writing on the same line, use write instead). writeln can take many
arguments. The statement

writeln("small: ", getsol(small), " large: ", getsol(large) )

will result in the values being printed all on one line.

1.2.3 Running Mosel from a command line

When you have entered the complete model into a file (let us call it chess.mos ), we can
proceed to get the solution to our problem. Three stages are required:

1. Compiling chess.mos to a compiled file, chess.bim

2. Loading the compiled file chess.bim

3. Running the model we have just loaded.

We start Mosel at the command prompt, and type the following sequence of commands

mosel

compile chess

load chess

run

quit

which will compile, load and run the model. We will see output something like that below,
where we have highlighted Mosel’s output in bold face.

mosel

** Xpress-Mosel **

(c) Copyright Dash Associates 1998-2002

> compile chess

Compiling ’chess’...

> load chess

> run

Make 0 small sets

Make 66.6667 large sets

Best profit is 1333.33

Returned value: 0

> quit

Exiting.

Since the compile/load/run sequence is so often used, it can be abbreviated to

cl chess run

or simply

exec chess

The same steps may be done immediately from the command line:

mosel -c "cl chess; run"

or
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mosel -c "exec chess"

The -c option is followed by a list of commands enclosed in double quotes. With Mosel’s silent
(-s ) option

mosel -s -c "exec chess"

the only output is

Make 0 small sets

Make 66.6667 large sets

Best profit is 1333.33

1.2.4 Using Xpress-IVE

Under Microsoft Windows you may also use Xpress-IVE, sometimes called just IVE, the Xpress
Interactive Visual Environment, for working with your Mosel models. Xpress-IVE is a complete
modeling and optimization development environment that presents Mosel in an easy-to-use
Graphical User Interface (GUI), with a built-in text editor.

To execute the model file chess.mos you need to carry out the following steps.

• Start up IVE.

• Open the model file by choosing File > Open. The model source is then displayed in the
central window (the IVE Editor).

• Click the Run button (green triangle) or alternatively, choose Build > Run.

The Build pane at the bottom of the workspace is automatically displayed when compilation
starts. If syntax errors are found in the model, they are displayed here, with details of the
line and character position where the error was detected and a description of the problem, if
available. Clicking on the error takes the user to the offending line.

When a model is run, the Output/Input pane at the right hand side of the workspace window
is selected to display program output. Any output generated by the model is sent to this
window. IVE will also provide graphical representations of how the solution is obtained, which
are generated by default whenever a problem is optimized. The right hand window contains a
number of panes for this purpose, dependent on the type of problem solved and the particular
algorithm used. IVE also allows the user to draw graphs by embedding subroutines in Mosel
models (see the documentation on the website for further detail).

IVE makes all information about the solution available through the Entities pane in the left
hand window. By expanding the list of decision variables in this pane and hovering over one
with the mouse pointer, its solution and reduced cost are displayed. Dual and slack values for
constraints may also be obtained.
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Chapter 2

Some illustrative examples

This chapter develops the basics of modeling set out in Chapter 1. It presents some further
examples of the use of Mosel and introduces new features:

• Use of subsripts: Almost all models of any size have subscripted variables. We show how
to define arrays of data and decision variables, introduce the different types of sets that
may be used as index sets for these arrays, and also simple loops over these sets.

• Working with data files: Mosel provides facilities to read from and write to data files in
text format and also from other data sources (databases and spreadsheets).

2.1 The burglar problem

A burglar sees 8 items, of different worths and weights. He wants to take the items of greatest
total value whose total weight is not more than the maximum WTMAX he can carry.

2.1.1 Model formulation

We introduce binary variables takei for all i in the set of all items (ITEMS) to represent the
decision whether item i is taken or not. takei has the value 1 if item i is taken and 0 other-
wise. Furthermore, let VALUEi be the value of item i and WEIGHTi its weight. A mathematical
formulation of the problem is then given by:

maximize
∑

i∈ITEMS

VALUEi · takei∑
i∈ITEMS

WEIGHTi · takei ≤WTMAX (weight restriction)

∀i ∈ ITEMS : takei ∈ {0, 1}

The objective function is to maximize the total value, that is, the sum of the values of all items
taken. The only constraint in this problem is the weight restriction. This problem is an example
of a knapsack problem.

2.1.2 Implementation

It may be implemented with Mosel as follows:

model Burglar
uses "mmxprs"

declarations
WTMAX = 102 ! Maximum weight allowed
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ITEMS = 1..8 ! Index range for items

VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Item: 1 2 3 4 5 6 7 8
VALUE := [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT:= [ 2, 20, 20, 30, 40, 30, 60, 10]

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution
writeln("Solution:\n Objective: ", getobjval)
forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))

end-model

When running this model we get the following output:

Solution:
Objective: 280
take(1): 1
take(2): 1
take(3): 1
take(4): 1
take(5): 0
take(6): 1
take(7): 0
take(8): 0

In this model there are a lot of new features, which we shall now explain.

• Constants:

WTMAX=102

declares a constant called WTMAX, and gives it the value 102. Since 102 is an integer, WTMAX
is an integer constant. Anything that is given a value in a declarations block is a constant.

• Ranges:

ITEMS = 1..8

defines a range set, that is, a set of consecutive integers from 1 to 8. This range is used
as an index set for the data arrays (VALUEand WEIGHT) and for the array of decision
variables take .

• Arrays:

VALUE: array(ITEMS) of real

defines a one-dimensional array of real values indexed by the range ITEMS. Exactly equiv-
alent would be

VALUE: array(1..8) of real ! Value of items
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Multi-dimensional arrays are declared in the obvious way e.g.

VAL3: array(ITEMS, 1..20, ITEMS) of real

declares a 3-dimensional real array. Arrays of decision variables (type mpvar ) are declared
likewise, as shown in our example:

x: array(ITEMS) of mpvar

declares an array of decision variables take(1) , take(2) , ..., take(8) .

All objects (scalars and arrays) declared in Mosel are always initialized with a default
value:

real , integer : 0
boolean : false
string : ’’ (i.e. the empty string)

In Mosel, reals are double precision.

• Assigning values to arrays: The values of data arrays may either be assigned in the model
as we show in the example or initialized from file (see Section 2.2).

VALUE := [15, 100, 90, 60, 40, 15, 10, 1]

fills the VALUEarray as follows:
VALUE(1) gets the value 15; VALUE(2) gets the value 100; ..., VALUE(8) gets the value
1.

For a 2-dimensional array such as

declarations

EE: array(1..2, 1..3) of real

end-declarations

we might write

EE:= [11, 12, 13,

21, 22, 23 ]

which of course is the same as

EE:= [11, 12, 13, 21, 22, 23]

but much more intuitive. Mosel places the values in the tuple into EE ‘going across the
rows’, with the last subscript varying most rapidly. For higher dimensions, the principle is
the same.

• Summations:

MaxVal:= sum(i in Items) VALUE(i)*x(i)

defines a linear expression called MaxVal as the sum∑
i∈Items

VALUEi · xi

• Naming constraints:

Optionally, constraints may be named (as in the chess set example). In the remainder of
this manual, we shall name constraints only if we need to refer to them at other places in
the model. In most examples, only the objective function is named (here MaxVal ) — to
be able to refer to it in the call to the optimization (here maximize(MaxVal) ).

• Simple Looping:

forall(i in ITEMS) take(i) is_binary

illustrates looping over all values in an index range. Recall that the index range ITEMS is 1,
..., 8, so the statement says that take(1) , take(2) , ..., take(8) are all binary variables.
There is another example of the use of forall at the penultimate line of the model
when writing out all the solution values.
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• Integer Programming variable types:

To make an mpvar variable, say variable xbinvar , into a binary (0/1) variable, we just
have to say

xbinvar is_binary

To make an mpvar variable an integer variable, i.e. one that can only take on integral
values in a MIP problem, we would have

xintvar is_integer

2.1.3 The burglar problem revisited

Consider this model:

model Burglar2
uses "mmxprs"

declarations
WTMAX = 102 ! Maximum weight allowed
ITEMS = {"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"} ! Index set for items

VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Item: ca ne va pi tv vi ch br
VALUE := [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT:= [ 2, 20, 20, 30, 40, 30, 60, 10]

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution
writeln("Solution:\n Objective: ", getobjval)
forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))

end-model

What have we changed? The answer is, ‘not very much’.

• String indices:

ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}

declares that this time ITEMS is a set of strings. The indices now take the string values
‘camera’, ‘necklace’ etc.

If we run the model, we get

Solution:
Objective: 280
x(camera): 1
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x(necklace): 1
x(vase): 1
x(picture): 1
x(tv): 0
x(video): 1
x(chest): 0
x(brick): 0

• Continuation lines:

Notice that the statement

ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}

was spread over two lines. Mosel is smart enough to recognize that the statement is not
complete, so it automatically tries to continue on the next line. If you wish to extend a
single statement to another line, just cut it after a symbol that implies a continuation, like
an operator (+, - , <=, ...) or a comma (, ) in order to warn the analyzer that the expression
continues in the following line(s). For example

ObjMax:= sum(i in Irange, j in Jrange) TAB(i,j) * x(i,j) +
sum(i in Irange) TIB(i) * delta(i) +
sum(j in Jrange) TUB(j) * phi(j)

Conversely, it is possible to place several statements on a single line, separating them by
semicolons (like x1 <= 4; x2 >= 7 ).

2.2 A blending example

A mining company has two types of ore available: Ore 1 and Ore 2. The ores can be mixed
in varying proportions to produce a final product of varying quality. For the product we are
interested in, the ‘grade’ (a measure of quality) of the final product must lie between the
specified limits of 4 and 5. It sells for REV = £125 per ton. The costs of the two ores vary, as do
their availabilities. The objective is to maximize the total net profit.

2.2.1 Model formulation

Denote the amounts of the ores to be used by use1 and use2. Maximizing net profit (i.e., sales
revenue less cost COSTo of raw material) gives us the objective function:∑

o∈ORES

(REV − COSTo) · useo

We then have to ensure that the grade of the final ore is within certain limits. Assuming the
grades of the ores combine linearly, the grade of the final product is:∑

o∈ORES GRADEo · useo∑
o∈ORES useo

This must be greater than or equal to 4 so, cross-multiplying and collecting terms, we have the
constraint: ∑

o∈ORES

(GRADEo − 4) · useo ≥ 0

Similarly the grade must not exceed 5.∑
o∈ORES GRADEo · useo∑

o∈ORES useo
≤ 5
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So we have the further constraint:∑
o∈ORES

(5− GRADEo) · useo ≥ 0

Finally there is a limit to the availability AVAILo of each of the ores. We model this with the
constraints:

∀o ∈ ORES : useo ≤ AVAILo

2.2.2 Implementation

The above problem description sets out the relationships which exist between variables but
contains few explicit numbers. Focusing on relationships rather than figures makes the model
much more flexible. In this example only the selling price REV and the upper/lower limits on
the grade of the final product (MINGRADE and MAXGRADE) are fixed.

Enter the following model into a file blend.mos .

model "Blend"
uses "mmxprs"

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from file blend.dat
initializations from ’blend.dat’

COST
AVAIL
GRADE

end-initializations

! Objective: maximize total profit
Profit:= sum(o in ORES) (REV-COST(o))* use(o)

! Lower and upper bounds on ore quality
sum(o in ORES) (GRADE(o)-MINGRADE)*use(o) >= 0
sum(o in ORES) (MAXGRADE-GRADE(o))*use(o) >= 0

! Set upper bounds on variables
forall(o in ORES) use(o) <= AVAIL(o)

maximize(Profit) ! Solve the LP-problem

! Print out the solution
writeln("Solution:\n Objective: ", getobjval)
forall(o in ORES) writeln(" use(" + o + "): ", getsol(use(o)))

end-model

The file blend.dat contains the following:
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! Data file for ’blend.mos’
COST: [85 93]
AVAIL: [60 45]
GRADE: [2.1 6.3]

The initializations from / end-initializations block is new here, telling Mosel where
to get data from to initialize named arrays. The order of the data items in the file does not
have to be the same as that in the initializations block; equally acceptable would have been
the statements

initializations from ’blend.dat’
AVAIL GRADE COST

end-initializations

Alternatively, since all data arrays have the same indices, they may be given in the form of a
single record, such as BLENDDATAin the following data file blendb.dat :

! [COST AVAIL GRADE]
BLENDDATA: [ [85 60 2.1]

[93 45 6.3] ]

In the initializations block we need to indicate the label of the data record and in which
order the data of the three arrays is given:

initializations from ’blendb.dat’
[COST,AVAIL,GRADE] as ’BLENDDATA’

end-initializations

2.2.3 Re-running the model with new data

There is a problem with the model we have just presented — the name of the file contain-
ing the costs date is hard-wired into the model. If we wanted to use a different file, say
blend2.dat , then we would have to edit the model, and recompile it.

Mosel has parameters to help with this situation. A model parameter is a symbol, the value of
which can be set just before running the model, often as an argument of the run command of
the command line interpreter.

model "Blend 2"
uses "mmxprs"

parameters
DATAFILE="blend.dat"

end-parameters

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from file
initializations from DATAFILE

COST
AVAIL
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GRADE
end-initializations

...

end-model

The parameter DATAFILE is recognized as a string, and its default value is specified. If we have
previously compiled the model into say blend2.bim , then the command

mosel -c "load blend2; run ’DATAFILE="blend2.dat"’"

will read the cost data from the file we want. Or to compile, load, and run the model using a
single command:

mosel -c "exec blend2 ’DATAFILE="blend2.dat"’"

2.2.4 Reading data from spreadsheets and databases

It is quite easy to create and maintain data tables in text files but in many industrial applications
data are provided in the form of spreadsheets or need to be extracted from databases. So
there is a facility in Mosel whereby the contents of ranges within spreadsheets may be read
into data tables and databases may be accessed. It requires an additional authorization in your
Xpress-MP license.

On the Dash website, separate documentation is provided for the SQL/ODBC interface (Mosel
module mmodbc). To give you a flavor of how Mosel’s SQL interface may be used, we now read
the data of the blending problem from a spreadsheet and then later from a database.

2.2.4.1 Spreadsheet example

Let us suppose that in a Microsoft Excel spreadsheet called blend.xls you have inserted the
following into the cells indicated:

Table 2.1: Spreadsheet example data

A B C D E F

1

2 ORES COST AVAIL GRADE

3 1 85 60 2.1

4 2 93 45 6.3

5

and called the range B2:E4 MyRange.

In Windows you need to set up a User Data Source called Excel Files , by clicking Add,
selecting Microsoft Excel Driver (*.xls), and filling in the ODBC Microsoft Excel Setup dialog.
Click Options >> and clear the Read Only check box.

The following model reads the data for the arrays COST, AVAIL , and GRADEfrom the Excel
range MyRange. Note that we have added "mmodbc" to the uses statement to indicate that
we are using the Mosel SQL/ODBC module.

model "Blend 3"
uses "mmodbc", "mmxprs"

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
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AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from spreadsheet blend.xls
SQLconnect(’DSN=Excel Files; DBQ=blend.xls’)
SQLexecute("select * from MyRange ", [COST,AVAIL,GRADE])

...

end-model

The SQL statement "select * from MyRange" says ‘select everything from the range called
MyRange’. It is possible to have much more complex selection statements than the ones we
have used.

2.2.4.2 Database example

If we use Microsoft Access, we might have set up an ODBC DSN called MSAccess, and suppose
we are extracting data from a table called MyTable in the database blend.mdb . There are just
the four columns ORES, columns COST, AVAIL , and GRADEin MyTable , and the data are the
same as in the Excel example above. We modify the example above to be

model "Blend 4"
uses "mmodbc", "mmxprs"

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from database blend.mdb
SQLconnect(’DSN=Access; DBQ=blend.mdb’)
SQLexecute("select * from MyTable ", [COST,AVAIL,GRADE])

...

end-model

To use other databases, for instance a mysql database (let us call it blend ), we merely need
to modify the connection string — provided that we have given the same names to the data
table and its columns:

SQLconnect(’DSN=mysql; DB=blend’)

ODBC, just like Mosel’s text file format, may also be used to output data. The reader is referred
to the ODBC/SQL documentation for more detail.

With version 1.4 of Mosel it becomes possible to access data sources through ODBC directly
from initializations blocks with the same syntax as what has been shown previously for
ordinary text format data files. In this case the SQL commands for reading or writing data are
generated by Mosel. The whitepaper Generalized file handling in Mosel gives several examples
of this simplified use of ODBC.
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Chapter 3

More advanced modeling features

This chapter introduces some more advanced features of the modeling language in Mosel. We
shall not attempt to cover all its features or give the detailed specification of their formats.
These are covered in greater depth in the Mosel Reference Manual.

Almost all large scale LP and MIP problems have a property known as sparsity, that is, each
variable appears with a non-zero coefficient in a very small fraction of the total set of con-
straints. Often this property is reflected in the data tables used in the model in that many
values of the tables are zero. When this happens, it is more convenient to provide just the
non-zero values of the data table rather than listing all the values, the majority of which are
zero. This is also the easiest way to input data into data tables with more than two dimensions.
An added advantage is that less memory is used by Mosel.

The main areas covered in this chapter are related to this property:

• dynamic arrays

• sparse data

• conditional generation

• displaying data

We start again with an example problem. The following sections deal with the different topics
in more detail.

3.1 A transport example

A company produces the same product at different plants in the UK. Every plant has a different
production cost per unit and a limited total capacity. The customers (grouped into customer
regions) may receive the product from different production locations. The transport cost is
proportional to the distance between plants and customers, and the capacity on every delivery
route is limited. The objective is to minimize the total cost, whilst satisfying the demands of all
customers.

3.1.1 Model formulation

Let PLANT be the set of plants and REGION the set of customer regions. We define decision
variables flowpr for the quantity transported from plant p to customer region r. The total cost
of the amount of product p delivered to region r is given as the sum of the transport cost (the
distance between p and r multiplied by a factor FUELCOST) and the production cost at plant p:

minimize
∑

p∈PLANT

∑
r∈REGION

(FUELCOST · DISTANCEpr + PLANTCOSTp) · flowpr
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The limits on plant capacity are give through the constraints

∀p ∈ PLANT :
∑

r∈REGION

flowpr ≤ PLANTCAPp

We want to meet all customer demands:

∀r ∈ REGION :
∑

p∈PLANT

flowpr = DEMANDr

The transport capacities on all routes are limited:

∀p ∈ PLANT, r ∈ REGION : flowpr ≤ TRANSCAPpr

For simplicity’s sake, in this mathematical model we assume that all routes p → r are defined
and that we have TRANSCAPpr = 0 to indicate that a route cannot be used.

3.1.2 Implementation

This problem may be implemented with Mosel as shown in the following:

model Transport
uses "mmxprs"

declarations
REGION: set of string ! Set of customer regions
PLANT: set of string ! Set of plants

DEMAND: array(REGION) of real ! Demand at regions
PLANTCAP: array(PLANT) of real ! Production capacity at plants
PLANTCOST: array(PLANT) of real ! Unit production cost at plants
TRANSCAP: array(PLANT,REGION) of real ! Capacity on each route plant->region
DISTANCE: array(PLANT,REGION) of real ! Distance of each route plant->region
FUELCOST: real ! Fuel cost per unit distance

flow: array(PLANT,REGION) of mpvar ! Flow on each route
end-declarations

initializations from ’transprt.dat’
DEMAND
[PLANTCAP,PLANTCOST] as ’PLANTDATA’
[DISTANCE,TRANSCAP] as ’ROUTES’
FUELCOST

end-initializations

! Create the flow variables that exist
forall(p in PLANT, r in REGION | exists(TRANSCAP(p,r)) ) create(flow(p,r))

! Objective: minimize total cost
MinCost:= sum(p in PLANT, r in REGION | exists(flow(p,r)))

(FUELCOST * DISTANCE(p,r) + PLANTCOST(p)) * flow(p,r)

! Limits on plant capacity
forall(p in PLANT) sum(r in REGION) flow(p,r) <= PLANTCAP(p)

! Satisfy all demands
forall(r in REGION) sum(p in PLANT) flow(p,r) = DEMAND(r)

! Bounds on flows
forall(p in PLANT, r in REGION | exists(flow(p,r)))

flow(p,r) <= TRANSCAP(p,r)
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minimize(MinCost) ! Solve the problem

end-model

REGIONand PLANTare declared to be sets of strings, as yet of unknown size. The data arrays
(DEMAND, PLANTCAP, PLANTCOST, TRANSCAP, and DISTANCE) and the array of variables flow
are indexed by members of REGIONand PLANT, their size is therefore not known at their decla-
ration: they are created as dynamic arrays. There is a slight difference between dynamic arrays
of data and of decision variables (type mpvar ): an entry of a data array is created automatically
when it is used in the Mosel program, entries of decision variable arrays need to be created
explicitly (see Section 3.2.1 below).

The data file transprt.dat contains the problem specific data. It might have, for instance,

DEMAND: [ (Scotland) 2840 (North) 2800 (SWest) 2600 (SEast) 2820 (Midlands) 2750]

! [CAP COST]
PLANTDATA: [ (Corby) [3000 1700]

(Deeside) [2700 1600]
(Glasgow) [4500 2000]
(Oxford) [4000 2100] ]

! [DIST CAP]
ROUTES: [ (Corby North) [400 1000]

(Corby SWest) [400 1000]
(Corby SEast) [300 1000]
(Corby Midlands) [100 2000]
(Deeside Scotland) [500 1000]
(Deeside North) [200 2000]
(Deeside SWest) [200 1000]
(Deeside SEast) [200 1000]
(Deeside Midlands) [400 300]
(Glasgow Scotland) [200 3000]
(Glasgow North) [400 2000]
(Glasgow SWest) [500 1000]
(Glasgow SEast) [900 200]
(Oxford Scotland) [800 *]
(Oxford North) [600 2000]
(Oxford SWest) [300 2000]
(Oxford SEast) [200 2000]
(Oxford Midlands) [400 500] ]

FUELCOST: 17

where we give the ROUTESdata only for possible plant/region routes, indexed by the plant
and region. It is possible that some data are not specified; for instance, there is no Corby ↔
Scotland route. So the data are sparse and we just create the flow variables for the routes
that exist. (The ‘* ’ for the (Oxford,Scotland) entry in the capacity column indicates that the
entry does not exist; we may write ’0’ instead: in this case the corresponding flow variable will
be created but bounded to be 0 by the transport capacity limit).

The condition whether an entry in a data table is defined is tested with the Mosel function
exists . With the help of the ‘|’ operator we add this test to the forall loop creating the
variables. It is not required to add this test to the sums over these variables: only the flowpr

variables that have been created are taken into account. However, if the sums involve exactly
the index sets that have been used in the declaration of the variables (here this is the case for
the objective function MinCost ), adding the existence test helps to speed up the enumeration
of the existing index-tuples. The following section introduces the conditional generation in a
more systematic way.
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3.2 Conditional generation — the | operator

Suppose we wish to apply an upper bound to some but not all members of a set of variables xi.
There are MAXI members of the set. The upper bound to be applied to xi is Ui, but it is only to
be applied if the entry in the data table TABi is greater than 20. If the bound did not depend
on the value in TABi then the statement would read:

forall(i in 1..MAXI) x(i) <= U(i)

Requiring the condition leads us to write

forall(i in 1..MAXI | TAB(i) > 20 ) x(i) <= U(i)

The symbol ‘|’ can be read as ‘such that’ or ‘subject to’.

Now suppose that we wish to model the following

MAXI∑
i=1

Ai>20

xi ≤ 15

In other words, we just want to include in a sum those xi for which Ai is greater than 20. This
is accomplished by

CC:= sum((i in 1..MAXI | A(i)>20 ) x(i) <= 15

3.2.1 Conditional variable creation and create

As we have already seen in the transport example (Section 3.1), with Mosel we can condition-
ally create variables. In this section we show a few more examples.

Suppose that we have a set of decision variables x(i) where we do not know the set of i for
which x(i) exist until we have read data into an array WHICH.

model doesx
declarations

IR = 1..15
WHICH: set of integer
x: dynamic array(IR) of mpvar

end-declarations

! Read data from file
initializations from ’doesx.dat’

WHICH
end-initializations

! Create the x variables that exist
forall(i in WHICH) create(x(i))

! Build a little model to show what esists
Obj:= sum(i in IR) x(i)
C:= sum(i in IR) i * x(i) >= 5

exportprob(0, "", Obj) ! Display the model
end-model

If the data in doesx.dat are

WHICH: [1 4 7 11 14]

the output from the model is
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Minimize
x(1) + x(4) + x(7) + x(11) + x(14)

Subject To
C: x(1) + 4 x(4) + 7 x(7) + 11 x(11) + 14 x(14) >= 5
Bounds
End

Note: exportprob(0, "", Obj) is a nice idiom for seeing on-screen the problem that has
been created.

The key point is that x has been declared as a dynamic array, and then the variables that exist
have been created explicitly with create . In the transport example in Section 3.1 we have
seen a different way of declaring dynamic arrays: the arrays are implicitly declared as dynamic
arrays since the index sets are unknown at their declaration.

When we later take operations over the index set of x (for instance, summing), we only include
those x that have been created.

Another way to do this, is

model doesx2
declarations

WHICH: set of integer
end-declarations

initializations from ’doesx.dat’
WHICH

end-initializations

finalize(WHICH)

declarations
x: array(WHICH) of mpvar ! Here the array is _not_ dynamic

end-declarations ! because the set has been finalized

Obj:= sum(i in WHICH) x(i)
C:= sum(i in WHICH) i * x(i) >= 5

exportprob(0, "", Obj)
end-model

By default, an array is of fixed size if all of its indexing sets are of fixed size (i.e. they are either
constant or have been finalized). Finalizing turns a dynamic set into a constant set consisting
of the elements that are currently in the set. All subsequently declared arrays that are indexed
by this set will be created as static (= fixed size). The second method has two advantages: it is
more efficient, and it does not require us to think of the limits of the range IR a priori.

3.3 Reading sparse data

Suppose we want to read in data of the form

i , j, valueij

from an ASCII file, setting up a dynamic array A(range, range) with just the A(i,j)=
value_ ij for the pairs (i,j) which exist in the file. Here is an example which shows three
different ways of doing this. We read data from differently formatted files into three different
arrays, and using writeln show that the arrays hold identical data.

The first method, using the initializations block, has already been introduced (transport
problem in Section 3.1). The second way of setting up and accessing data demonstrates the
immense flexibility of readln . As a third possibility, one may use the diskdata subroutine
from module mmetc to read in comma separated value (CSV) files.
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model "Trio input"
uses "mmetc" ! Required for diskdata

declarations
A1, A2, A3: array(range,range) of real
i, j: integer

end-declarations

! First method: use an initializations block
initializations from ’data_1.dat’

A1 as ’MYDATA’
end-initializations

! Second method: use the built-in readln function
fopen("data_2.dat",F_INPUT)
repeat

readln(’Tut(’,i,’and’,j,’)=’, A2(i,j))
until getparam("nbread") < 6
fclose(F_INPUT)

! Third method: use diskdata
diskdata(ETC_IN+ETC_SPARSE,"data_3.dat", A3)

! Now let us see what we have
writeln(’A1 is: ’, A1)
writeln(’A2 is: ’, A2)
writeln(’A3 is: ’, A3)

end-model

The data files could be set up thus:

File data_1.dat :

MYDATA: [ (1 1) 12.5 (2 3) 5.6 (10 9) -7.1 (3 2) 1 ]

File data_2.dat :

Tut(1 and 1)=12.5

Tut(2 and 3)=5.6

Tut(10 and 9)=-7.1

Tut(3 and 2)=1

File data_3.dat :

1, 1, 12.5 2, 3, 5.6 10,9, -7.1 3, 2, 1

When printing any of the three arrays A1, A2, or A3 we get the following output:

[(1,1,12.5),(2,3,5.6),(3,2,1),(10,9,-7.1)]
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Chapter 4

Integer Programming

Though many systems can accurately be modeled as Linear Programs, there are situations
where discontinuities are at the very core of the decision making problem. There seem to
be three major areas where non-linear facilities are required

• where entities must inherently be selected from a discrete set;

• in modeling logical conditions; and

• in finding the global optimum over functions.

Mosel lets you model these non-linearities using a range of discrete (global) entities and then
the Xpress-MP Mixed Integer Programming (MIP) optimizer can be used to find the overall
(global) optimum of the problem. Usually the underlying structure is that of a Linear Pro-
gram, but optimization may be used successfully when the non-linearities are separable into
functions of just a few variables.

4.1 Integer Programming entities in Mosel

We shall show how to make variables and sets of variables into global entities by using the
following declarations.

declarations
IR = 1..8 ! Index range
WEIGHT: array(IR) of real ! Weight table
x: array(IR) of mpvar

end-declarations

WEIGHT:= [ 2, 5, 7, 10, 14, 18, 22, 30]

Xpress-MP handles the following global entities:

• Binary variables: decision variables that can take either the value 0 or the value 1 (do/
don’t do variables).

We make a variable, say x(4) , binary by

x(4) is_binary

• Integer variables: decision variables that can take only integer values.

We make a variable, say x(7) , integer by

x(7) is_integer

• Partial integer variables: decision variables that can take integer values up to a specified
limit and any value above that limit.

x(1) is_partint 5 ! Integer up to 5, then continuous
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• Semi-continuous variables: decision variables that can take either the value 0, or a value
between some lower limit and upper limit. Semi-continuous variables help model situa-
tions where if a variable is to be used at all, it has to be used at some minimum level.

x(2) is_semcont 6 ! A ’hole’ between 0 and 6, then continuous

• Semi-continuous integer variables: decision variables that can take either the value 0,
or an integer value between some lower limit and upper limit. Semi-continuous integer
variables help model situations where if a variable is to be used at all, it has to be used at
some minimum level, and has to be integer.

x(3) is_semint 7 ! A ’hole’ between 0 and 7, then integer

• Special Ordered Sets of type one (SOS1): an ordered set of variables at most one of which
can take a non-zero value.

• Special Ordered Sets of type two (SOS2): an ordered set of variables, of which at most
two can be non-zero, and if two are non-zero these must be consecutive in their ordering.

If the coefficients in the WEIGHTarray determine the ordering of the variables, we might
form a SOS1 or SOS2 set MYSOSby

MYSOS:= sum(i in IRng) WEIGHT(i)*x(i) is_sosX

where is_sosX is either is_sos1 for SOS1 sets, or is_sos2 for SOS2 sets.

Alternatively, if the set S holds the members of the set and the linear constraint L contains
the set variables’ coefficients used in ordering the variables (the so-called reference row
entries), then we can do thus:

makesos1(S,L)

with the obvious change for SOS2 sets. This method must be used if the coefficient (here
WEIGHT(i) ) of an intended set member is zero. With is_sosX the variable will not
appear in the set since it does not appear in the linear expression.

Another point to note about Special Ordered Sets is that the ordering coefficients must
be distinct (or else they are not doing their job of supplying an order!).

The most commonly used entities are binary variables, which can be employed to model a
whole range of logical conditions. General integers are more frequently found where the un-
derlying decision variable really has to take on a whole number value for the optimal solution
to make sense. For instance, we might be considering the number of airplanes to charter,
where fractions of an airplane are not meaningful and the optimal answer will probably in-
volve so few planes that rounding to the nearest integer may not be satisfactory.

Partial integers provide some computational advantages in problems where it is acceptable to
round the LP solution to an integer if the optimal value of a decision variable is quite large,
but unacceptable if it is small. Semi-continuous variables are useful where, if some variable
is to be used, its value must be no less than some minimum amount. If the variable is a semi-
continuous integer variable, then it has the added restriction that it must be integral too.

Special Ordered Sets of type 1 are often used in modeling choice problems, where we have
to select at most one thing from a set of items. The choice may be from such sets as: the
time period in which to start a job; one of a finite set of possible sizes for building a factory;
which machine type to process a part on. Special Ordered Sets of type 2 are typically used to
model non-linear functions of a variable. They are the natural extension of the concepts of
Separable Programming, but when embedded in a Branch-and-Bound code (see below) enable
truly global optima to be found, and not just local optima. (A local optimum is a point where
all the nearest neighbors are worse than it, but where we have no guarantee that there is not
a better point some way away. A global optimum is a point which we know to be the best. In
the Himalayas the summit of K2 is a local maximum height, whereas the summit of Everest is
the global maximum height).

Theoretically, models that can be built with any of the entities we have listed above can be
modeled solely with binary variables. The reason why modern IP systems have some or all
of the extra entities is that they often provide significant computational savings in computer
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time and storage when trying to solve the resulting model. Most books and courses on Integer
Programming do not emphasize this point adequately. We have found that careful use of the
non-binary global entities often yields very considerable reductions in solution times over ones
that just use binary variables.

To illustrate the use of Mosel in modeling Integer Programming problems, a small example
follows. The first formulation uses binary variables. This formulation is then modified use
Special Ordered Sets.

For the interested reader, an excellent text on Integer Programming is Integer Programming
by Laurence Wolsey, Wiley Interscience, 1998, ISBN 0-471-28366-5.

4.2 A project planning model

A company has several projects that it must undertake in the next few months. Each project
lasts for a given time (its duration) and uses up one resource as soon as it starts. The resource
profile is the amount of the resource that is used in the months following the start of the
project. For instance, project 1 uses up 3 units of resource in the month it starts, 4 units in its
second month, and 2 units in its last month.

The problem is to decide when to start each project, subject to not using more of any resource
in a given month than is available. The benefit from the project only starts to accrue when
the project has been completed, and then it accrues at BENp per month for project p, up to
the end of the time horizon. Below, we give a mathematical formulation of the above project
planning problem, and then display the Mosel model form.

4.2.1 Model formulation

Let PROJ denote the set of projects and MONTHS = {1, . . . , NM} the set of months to plan for.
The data are:

DURp the duration of project p
RESUSEpt the resource usage of project p in its tth month
RESMAXm the resource available in month m
BENp the benefit per month when project finishes

We introduce the binary decision variables startpm that are 1 if project p starts in month m, and
0 otherwise.

The objective function is obtained by noting that the benefit coming from a project only starts
to accrue when the project has finished. If it starts in month m then it finishes in month
m+DURp−1. So, in total, we get the benefit of BENp for NM−(m+DURp−1) = NM−m−DURp+1
months. We must consider all the possible projects, and all the starting months that let the
project finish before the end of the planning period. For the project to complete it must start
no later than month NM− DURp. Thus the profit is:

∑
p∈PROJ

NM−DURp∑
m=1

(
BENp ·

(
NM−m− DURp + 1

))
· startpm

Each project must be done once, so it must start in one of the months 1 to NM− DURp:

∀p ∈ PROJ :
∑

m∈MONTHS

startpm = 1

We next need to consider the implications of the limited resource availability each month.
Note that if a project p starts in month m it is in its (k−m + 1)th month in month k, and so will
be using RESUSEp,k−m+1 units of the resource. Adding this up for all projects and all starting
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months up to and including the particular month k under consideration gives:

∀k ∈MONTHS :
∑

p∈PROJ

k∑
m=1

RESUSEp,k+1−m · startpm ≤ RESMAXk

Finally we have to specify that the startpm are binary (0 or 1) variables:

∀p ∈ PROJ, m ∈MONTHS : startpm ∈ {0, 1}

Note that the start month of a project p is given by:

NM−DURp∑
m=1

m · startpm

since if an startpm is 1 the summation picks up the corresponding m.

4.2.2 Implementation

The model as specified to Mosel is as follows:

model Pplan
uses "mmxprs"

declarations
PROJ = 1..3 ! Set of projects
NM = 6 ! Time horizon (months)
MONTHS = 1..NM ! Set of time periods (months) to plan for

DUR: array(PROJ) of integer ! Duration of project p
RESUSE: array(PROJ,MONTHS) of integer

! Res. usage of proj. p in its t’th month
RESMAX: array(MONTHS) of integer ! Resource available in month m
BEN: array(PROJ) of real ! Benefit per month once project finished

start: array(PROJ,MONTHS) of mpvar ! 1 if proj p starts in month t, else 0
end-declarations

DUR := [3, 3, 4]
RESMAX:= [5, 6, 5, 5, 4, 5]
BEN := [10.2, 12.3, 11.2]
RESUSE(1,1):= [3, 4, 2]
RESUSE(2,1):= [4, 1, 6]
RESUSE(3,1):= [3, 2, 1, 2] ! Other RESUSE entries are 0 by default

! Objective: Maximize Benefit
! If project p starts in month t, it finishes in month t+DUR(p)-1 and
! contributes a benefit of BEN(p) for the remaining NM-(t+DUR(p)-1) months:

MaxBen:=
sum(p in PROJ, m in 1..NM-DUR(p)) (BEN(p)*(NM-m-DUR(p)+1)) * start(p,m)

! Each project starts once and only once:
forall(p in PROJ) One(p):= sum(m in MONTHS) start(p,m) = 1

! Resource availability:
! A project starting in month m is in its k-m+1’st month in month k:

forall(k in MONTHS) ResMax(k):=
sum(p in PROJ, m in 1..k) RESUSE(p,k+1-m)*start(p,m) <= RESMAX(k)

! Make all the start variables binary
forall(p in PROJ, m in MONTHS) start(p,m) is_binary
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maximize(MaxBen) ! Solve the MIP-problem

writeln("Solution value is: ", getobjval)
forall(p in PROJ) writeln( p, " starts in month ",

getsol(sum(m in 1..NM-DUR(p)) m*start(p,m)) )
end-model

Note that in the solution printout we apply the getsol function not to a single variable but
to a linear expression.

4.3 The project planning model using Special Ordered Sets

The example can be modified to use Special Ordered Sets of type 1 (SOS1). The startpm variables
for a given p form a set of variables which are ordered by m, the month. The ordering is
induced by the coefficients of the startpm in the specification of the SOS. For example, startp1’s
coefficient, 1, is less than startp2’s, 2, which in turn is less than startp3’s coefficient, and so on
The fact that the startpm variables for a given p form a set of variables is specified to Mosel as
follows:

(! Define SOS-1 sets that ensure that at most one start(p,m) is non-zero
for each project p. Use month index to order the variables !)

forall(p in PROJ) XSet(p):= sum(m in MONTHS) m*start(p,m) is_sos1

The is_sos1 specification tells Mosel that Xset(p) is a Special Ordered Set of type 1. The lin-
ear expression specifies both the set members and the coefficients that order the set members.
It says that all the startpm variables for m in the MONTHS index range are members of an SOS1
with reference row entries m.

The specification of the startpm as binary variables must now be removed. The binary nature
of the startpm is implied by the SOS1 property, since if the startpm must add up to 1 and only
one of them can differ from zero, then just one is 1 and the others are 0.

If the two formulations are equivalent why were Special Ordered Sets invented, and why are
they useful? The answer lies in the way the reference row gives the search procedure in Integer
Programming (IP) good clues as to where the best solution lies. Quite frequently the Linear
Programming (LP) problem that is solved as a first approximation to an Integer Program gives
an answer where startp1 is fractional, say with a value of 0.5, and startp,NM takes on the same
fractional value. The IP will say:

"my job is to get variables to 0 or 1. Most of the variables are already there so I will try moving
xp1 or xpT. Since the set members must add up to 1.0, one of them will go to 1, and one to 0.
So I think that we start the project either in the first month or in the last month."

A much better guess is to see that the startpm are ordered and the LP solution is telling us it
looks as if the best month to start is somewhere midway between the first and the last month.
When sets are present, the IP can branch on sets of variables. It might well separate the months
into those before the middle of the period, and those later. It can then try forcing all the early
startpm to 0, and restricting the choice of the one startpm that can be 1 to the later startpm. It
has this option because it now has the information to ‘know’ what is an early and what is a
late startpm, whereas these variables were unordered in the binary formulation.

The power of the set formulation can only really be judged by its effectiveness in solving large,
difficult problems. When it is incorporated into a good IP system such as Xpress-MP it is often
found to be an order of magnitude better than the equivalent binary formulation for large
problems.
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Chapter 5

Overview of subroutines and
reserved words

There is a range of built-in functions and procedures available in Mosel. They are described
fully in the Mosel Language Reference Manual. Here is a summary.

• Accessing solution values: getsol , getact , getcoeff , getdual , getrcost , getslack ,
getobjval

• Arithmetic functions: arctan , cos , sin , ceil , floor , round , exp , ln , log , sqrt , isodd

• List functions: maxlist , minlist

• String functions:strfmt , substr

• Dynamic array handling: create , finalize

• File handling: fclose , fflush , fopen , fselect , fskipline , getfid , iseof , read ,
readln

• Accessing control parameters: getparam , setparam

• Getting information: getsize , gettype , getvars

• Hiding constraints: sethidden , ishidden

• Miscellaneous functions: exportprob , bittest , random , setcoeff , settype , exit

5.1 Modules

The distribution of Mosel contains several modules that add extra functionality to the lan-
guage.

A full list of the functionality of a module can be obtained by using Mosel’s exam command,
for instance

mosel -c "exam mmsystem"

In this manual, we always use Xpress-Optimizer as solver. Access to the corresponding opti-
mization functions is provided by the module mmxprs.

In the mmxprs module are the following useful functions.

• Optimize: minimize , maximize

• MIP directives: setmipdir , clearmipdir

• Handling bases: savebasis , loadbasis , delbasis
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• Force problem loading: loadprob

• Accessing problem status: getprobstat

• Deal with bounds: setlb , setub , getlb , getub

• Model cut functions: setmodcut , clearmodcut

For example, here is a nice habit to get into when solving a problem with the Xpress-MP
Optimizer.

declarations
status:array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB}) of string

end-declarations

status:=["Optimum found","Unfinished","Infeasible","Unbounded"]
...
minimize(Obj)
writeln(status(getprobstat))

In the mmsystem module are various useful functions provided by the underlying operating
system:

• Delete a file/directory: fdelete , removedir

• Move a file: fmove

• Current working directory: getcwd

• Get an environment variable’s value: getenv

• File status: getfstat

• Returns the system status: getsysstat

• Time: gettime

• Make a directory: makedir

• General system call: system

Other modules mentioned in this manual are mmodbcand mmetc.

See the module reference manuals for full details.

5.2 Reserved words

The following words are reserved in Mosel. The upper case versions are also reserved (i.e. AND
and and are keywords but not And). Do not use them in a model except with their built-in
meaning.

and , array , as
boolean , break
case
declarations , div , do , dynamic
elif , else , end
false , forall , forward , from , function
if , in , include , initialisations , initializations , integer , inter ,
is_binary , is_continuous , is_free , is_integer , is_partint , is_semcont ,
is_semint , is_sos1 , is_sos2
linctr
max, min , mod, model , mpvar
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next , not
of , options , or
parameters , procedure , public , prod
range , real , repeat
set , string , sum
then , to , true
union , until , uses
while
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Chapter 6

Correcting syntax errors in Mosel

The parser of Mosel is able to detect a large number of errors that may occur when writing a
model. In this chapter we shall try to analyze and correct some of these.

If we compile the model

model ‘Plenty of errors’
declarations

small, large: mpvar
end-declarations

Profit= 5*small + 20*large
Boxwood:= small + 3*large <= 200
Lathe:= 3*small + 2*large <= 160

maximize(Profit)

writeln("Best profit is ", getobjval
end-model

we get the following output:

Mosel: E-100 at (1,7) of ‘poerror.mos’: Syntax error before ‘‘’.

Parsing failed.

The second line of the output informs us that the compilation has not been executed correctly.
The first line tells us exactly the type of the error that has been detected, namely a syntax error
with the code E-100 (where E stands for error) and its location: line 1 character 7. The problem
is caused by the apostrophe ‘ (or something preceding it). Indeed, Mosel expects either single
or double quotes around the name of the model if the name contains blanks. We therefore
replace it by ’ and compile the corrected model, resulting in the following display:

Mosel: E-100 at (6,8) of ‘poerror.mos’: Syntax error before ‘=’.
Mosel: W-121 at (6,29) of ‘poerror.mos’: Statement with no effect.
Mosel: E-100 at (10,16) of ‘poerror.mos’: ‘Profit’ is not defined.
Mosel: E-123 at (10,17) of ‘poerror.mos’: ‘maximize’ is not defined.
Mosel: E-100 at (12,37) of ‘poerror.mos’: Syntax error.
Parsing failed.

There is a problem with the sign = in the 6th line:

Profit= 5*small + 20*large

In the model body the equality sign = may only be used in the definition of constraints or
in logical expressions. Constraints are linear relations between variables, but profit has not
been defined as a variable, so the parser detects an error. What we really want, is to assign the
linear expression 5*small + 20*large to Profit . For such an assignment we have to use
the sign := . Using just = is a very common error.
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As a consequence of this error, the linear expression after the equality sign does not have any
relevance to the problem that is stated. The parser informs us about this fact in the second line:
it has found a statement with no effect. This is not an error that would cause the failure of the
compilation taken on its own, but simply a warning (marked by the Win the error code W-121)
that there may be something to look into. Since Profit has not been defined, it cannot be
used in the call to the optimization, hence the third error message.

As we have seen, the second and the third error messages are consequences of the first mistake
we have made. Before looking at the last message that has been displayed we recompile the
model with the corrected line

Profit:= 5*small + 20*large

to get rid of all side effects of this error. Unfortunately, we still get a few error messages:

Mosel: E-123 at (10,17) of ‘poerror.mos’: ‘maximize’ is not defined.

Mosel: E-100 at (12,37) of ‘poerror.mos’: Syntax error.

There is still a problem in line 10; this time it shows up at the very end of the line. Although
everything appears to be correct, the parser does not seem to know what to do with maximize .
The solution to this enigma is that we have forgotten to load the module mmxprs that provides
the optimization function maximize . To tell Mosel that this module is used we need to add
the line

uses "mmxprs"

immediately after the start of the model, before the declarations block. Forgetting to specify
mmxprs is another common error. We now have a closer look at line 12 (which has now be-
come line 13 due to the addition of the uses statement). All subroutines called in this line
(writeln and getobjval ) are provided by Mosel, so there must be yet another problem: we
have forgotten to close the parentheses. After adding the closing parenthesis after getobjval
the model finally compiles without displaying any errors. If we run it we obtain the desired
output:

Best profit is 1333.33

Returned value: 0

Besides the detection of syntax errors, Mosel may also give some help in finding run time
errors. It should only be pointed out here that it is possible to add the flag -g to the compile
command to obtain some information about where the error occurred in the program. Also
useful is turning on verbose reporting, for instance

setparam("XPRS_VERBOSE",true)

setparam("XPRS_LOADNAMES",true)
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II. Advanced language features



This part takes the reader who wants to use Mosel as a modeling, solving and programming en-
vironment through its powerful programming language facilities. The following topics, most
of which have already shortly been mentioned in the first part, are covered in a more detailed
way:

• Selections and loops (Chapter 7)

• Working with sets (Chapter 8)

• Functions and procedures (Chapter 9)

• Output to files and producing formatted output (Chapter 10)

Whilst the first four chapters in this part present pure programming examples, the last two
chapters contain some advanced examples of LP and MIP that make use of the programming
facilities in Mosel:

• Cut generation (Section 11.1)

• Column generation (Section 11.2)

• Recursion or Successive Linear Pogramming (Section 12.1)

• Goal Programming (Section 12.2)
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Chapter 7

Flow control constructs

Flow control constructs are mechanisms for controlling the order of the execution of the ac-
tions in a program. In this chapter we are going to have a closer look at two fundamental
types of control constructs in Mosel: selections and loops.

Frequently actions in a program need to be repeated a certain number of times, for instance
for all possible values of some index or depending on whether a condition is fulfilled or not.
This is the purpose of loops. Since in practical applications loops are often interwoven with
conditions (selection statements), these are introduced first.

7.1 Selections

Mosel provides several statements to express a selection between different actions to be taken
in a program. The simplest form of a selection is the if-then statement:

• if-then: ‘If a condition holds do something’. For example:
if A >= 20 then

x <= 7
endif

For an integer number A and a variable x of type mpvar , x is constrained to be less or equal to
7 if A is greater or equal 20.

Note that there may be any number of expressions between then and endif , not just a single
one.

In other cases, it may be necessary to express choices with alternatives.

• if-then-else: ‘If a condition holds, do this, otherwise do something else’. For example:
if A >= 20 then

x <= 7
else x >= 35

endif

Here the upper bound 7 is applied to the variable x if the value of A is greater or equal
20, otherwise the lower bound 35 is applied to it.

• if-then-elif-then-else: ‘If a condition holds do this, otherwise, if a second condition holds
do something else etc.’

if A >= 20 then
x <= 7

elif A <= 10 then
x >= 35

else
x = 0

endif
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Here the upper bound 7 is applied to the variable x if the value of A is greater or equal
20, and if the value of A is less or equal 10 then the lower bound 35 is applied to x . In all
other cases (that is, A is greater than 10 and smaller than 20), x is fixed to 0.

Note that this could also be written using two separate if-then statements but it is more
efficient to use if-then-elif-then[-else] if the cases that are tested are mutually
exclusive.

• case: ‘Depending on the value of an expression do something’.

case A of
-MAX_INT..10 : x >= 35
20..MAX_INT : x <= 7
12, 15 : x = 1
else x = 0

endif

Here the upper bound 7 is applied to the variable x if the value of A is greater or equal
20, and the lower bound 35 is applied if the value of A is less or equal 10. In addition, x is
fixed to 1 if A has value 12 or 15, and fixed to 0 for all remaining values.

An example for the use of the case statement is given in Section 12.2.

The following example uses the if-then-elif-then statement to compute the minimum
and the maximum of a set of randomly generated numbers:

model Minmax

declarations
SNumbers: set of integer
LB=-1000 ! Elements of SNumbers must be between LB
UB=1000 ! and UB

end-declarations

! Generate a set of 50 randomly chosen numbers
forall(i in 1..50)

SNumbers += {round(random*200)-100}

writeln("Set: ", SNumbers, " (size: ", getsize(SNumbers), ")")

minval:=UB
maxval:=LB
forall(p in SNumbers)

if p<minval then
minval:=p

elif p>maxval then
maxval:=p

end-if

writeln("Min: ", minval, ", Max: ", maxval)

end-model

Instead of writing the loop above, it would of course be possible to use the corresponding
operators min and max provided by Mosel:

writeln("Min: ", min(p in SNumbers) p, ", Max: ", max(p in SNumbers) p)

It is good programming practice to indent the block of statements in loops or selections as
in the preceding example so that it becomes easy to get an overview where the loop or the
selection ends. — At the same time this may serve as a control whether the loop or selection
has been terminated correctly (i.e. no end-if or similar key words terminating loops have
been left out).
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7.2 Loops

Loops group actions that need to be repeated a certain number of times, either for all values
of some index or counter (forall ) or depending on whether a condition is fulfilled or not
(while , repeat-until ).

This section presents the complete set of loops available in Mosel, namely forall , forall-do ,
while , while-do , and repeat-until .

7.2.1 forall

The forall loop repeats a statement or block of statements for all values of an index or
counter. If the set of values is given as an interval of integers (range ), the enumeration starts
with the smallest value. For any other type of sets the order of enumeration depends on the
current (internal) order of the elements in the set.

The forall loop exists in two different versions in Mosel. The inline version of the forall
loop (i.e. looping over a single statement) has already been used repeatedly, for example as in
the following loop that constrains variables x(i) (i=1,...,10) to be binary.

forall(i in 1..10) x(i) is_binary

The second version of this loop, forall-do , may enclose a block of statements, the end of
which is marked by end-do .

Note that the indices of a forall loop can not be modified inside the loop. Furthermore, they
must be new objects: a symbol that has been declared cannot be used as index of a forall
loop.

The following example that calculates all perfect numbers between 1 and a given upper limit
combines both types of the forall loop. (A number is called perfect if the sum of its divisors
is equal to the number itself.)

model Perfect

parameters
LIMIT=100

end-parameters

writeln("Perfect numbers between 1 and ", LIMIT, ":")

forall(p in 1..LIMIT) do
sumd:=1
forall(d in 2..p-1)

if p mod d = 0 then ! Mosel’s built-in mod operator
sumd+=d ! The same as sum:= sum + d

end-if
if p=sumd then

writeln(p)
end-if

end-do

end-model

The outer loop encloses several statements, we therefore need to use forall-do . The inner
loop only applies to a single statement (if statement) so that we may use the inline version
forall .

If run with the default parameter settings, this program computes the solution 1, 6, 28.
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7.2.1.1 Multiple indices

The forall statement (just like the sum operator and any other statement in Mosel that re-
quires index set(s)) may take any number of indices, with values in sets of any basic type or
ranges of integer values. If two or more indices have the same set of values as in

forall(i in 1..10, j in 1..10) y(i,j) is_binary

(where y(i,j) are variables of type mpvar ) the following equivalent short form may be used:

forall(i,j in 1..10) y(i,j) is_binary

7.2.1.2 Conditional looping

The possibility of adding conditions to a forall loop via the ‘|’ symbol has already been men-
tioned in Chapter 3. Conditions may be applied to one or several indices and the selection
statement(s) can be placed accordingly. Take a look at the following example where A and U
are one- and two-dimensional arrays of integers or reals respectively, and y a two-dimensional
array of decision variables (mpvar ):

forall(i in -10..10, j in 0..5 | A(i) > 20) y(i,j) <= U(i,j)

For all i from -10 to 10, the upper bound U(i,j) is applied to the variable y(i,j) if the value
of A(i) is greater than 20.

The same conditional loop may be reformulated (in an equivalent but usually less efficient
way) using the if statement:

forall(i in -10..10, j in 0..5)
if A(i) > 20

y(i,j) <= U(i,j)
end-if

If we have a second selection statement on both indices with B a two-dimensional array of
integers or reals, we may either write

forall(i in -10..10, j in 0..5 | A(i) > 20 and B(i,j) <> 0 ) y(i,j) <= U(i,j)

or, more efficiently, since the second condition on both indices is only tested if the condition
on index i holds:

forall(i in -10..10 | A(i) > 20, j in 0..5 | B(i,j) <> 0 ) y(i,j) <= U(i,j)

7.2.2 while

A while loop is typically employed if the number of times that the loop needs to be executed is
not know beforehand but depends on the evaluation of some condition: a set of statements is
repeated while a condition holds. As with forall , the while statement exists in two versions,
an inline version (while ) and a version (while-do ) that is to be used with a block of program
statements.

The following example computes the largest common divisor of two integer numbers A and B
(that is, the largest number by which both A and B, can be divided without remainder). Since
there is only a single if-then-else statement in the while loop we could use the inline
version of the loop but, for clarity’s sake, we have given preference to the while-do version
that marks where the loop terminates clearly.

model Lcdiv1

declarations
A,B: integer

end-declarations

write("Enter two integer numbers:\n A: ")
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readln(A)
write(" B: ")
readln(B)

while (A <> B) do
if (A>B) then

A:=A-B
else B:=B-A
end-if

end-do

writeln("Largest common divisor: ", A)

end-model

7.2.3 repeat until

The repeat-until structure is similar to the while statement with the difference that the
actions in the loop are executed once before the termination condition is tested for the first
time.

The following example combines the three types of loops (forall , while , repeat-until )
that are available in Mosel. It implements a Shell sort algorithm for sorting an array of numbers
into numerical order. The idea of this algorithm is to first sort, by straight insertion, small
groups of numbers. Then several small groups are combined and sorted. This step is repeated
until the whole list of numbers is sorted.

The spacings between the numbers of groups sorted on each pass through the data are called
the increments. A good choice is the sequence which can be generated by the recurrence
inc1 = 1, inck+1 = 3 · inck + 1, k = 1, 2, . . .

model "Shell sort"

declarations
N: integer ! Size of array ANum
ANum: array(range) of real ! Unsorted array of numbers

end-declarations

N:=50
forall(i in 1..N)

ANum(i):=round(random*100)

writeln("Given list of numbers (size: ", N, "): ")
forall(i in 1..N) write(ANum(i), " ")
writeln

inc:=1 ! Determine the starting increment
repeat

inc:=3*inc+1
until (inc>N)

repeat ! Loop over the partial sorts
inc:=inc div 3
forall(i in inc+1..N) do ! Outer loop of straight insertion

v:=ANum(i)
j:=i
while (ANum(j-inc)>v) do ! Inner loop of straight insertion

ANum(j):=ANum(j-inc)
j -= inc
if j<=inc then break; end-if

end-do
ANum(j):= v

end-do
until (inc<=1)
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writeln("Ordered list: ")
forall(i in 1..N) write(ANum(i), " ")
writeln

end-model

The example introduces a new statement: break . It can be used to interrupt one or several
loops. In our case it stops the inner while loop. Since we are jumping out of a single loop,
we could as well write break 1 . If we wrote break 3 , the break would make the algorithm
jump 3 loop levels higher, that is outside of the repeat-until loop.

Note that there is no limit to the number of nested levels of loops and/or selections in Mosel.
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Chapter 8

Sets

A set collects objects of the same type without establishing an order among them (as is the
case with arrays). In Mosel, sets may be defined for all elementary types, that is the basic types
(integer , real , string , boolean ) and the MP types (mpvar and linctr ).

This chapter presents in a more systematic way the different possibilities how sets may be
initialized (all of which the reader has already encountered in the examples in the first part),
and shows also more advanced ways of working with sets.

8.1 Initializing sets

In the revised formulation of the burglar problem in Chapter 2 and also in the models in
Chapter 3 we have already seen different examples for the use of index sets. We recall here
the relevant parts of the respective models.

8.1.1 Constant sets

In the Burglar example the index set is assigned directly in the model:

declarations
ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"}
end-declarations

Since in this example the set contents is set in the declarations section, the index set ITEMS is
a constant set (its contents cannot be changed). To declare it as a dynamic set, the contents
needs to be assigned after its declaration:

declarations
ITEMS: set of string

end-declarations

ITEMS:={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}

8.1.2 Set initialization from file, finalized and fixed sets

In Chapter 3 the reader has encountered several examples how the contents of sets may be
initialized from data files.

The contents of the set may be read in directly as in the following case:

declarations
WHICH: set of integer

end-declarations
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initilizations from ’idata.dat’
WHICH

end-initializations

Where idata.dat contains data in the following format:

WHICH: [1 4 7 11 14]

Unless a set is constant, arrays that are indexed by this set are created as dynamic arrays. Since
in many cases the contents of a set does not change any more after its initialization, Mosel
provides the finalize statement that turns a (dynamic) set into a constant set. Consider the
continuation of the example above:

finalize(WHICH)

declarations
x: array(WHICH) of mpvar

end-declarations

The array of variables x will be created as a static array, without the finalize statement it
would be dynamic since the index set WHICHmay still be subject to changes. Declaring arrays
in the form of static arrays is preferable if the indexing set is known before because this allows
Mosel to handle them in a more efficient way.

Index sets may also be initialized indirectly during the initialization of dynamic arrays:

declarations
REGION: set of string
DEMAND: array(REGION) of real

end-declarations

initializations from ’transprt.dat’
DEMAND

end-initilizations

If file transprt.dat contains the data:

DEMAND: [(Scotland) 2840 (North) 2800 (West) 2600 (SEast) 2820 (Midlands) 2750]

then printing the set REGIONafter the initialization will give the following output:

{‘Scotland’,‘North’,‘West’,‘SEast’,‘Midlands’}

Once a set is used for indexing an array (of data, decision variables etc.) it is fixed, that is, its
elements can no longer be removed, but it may still grow in size.

The indirect initialization of (index) sets is not restricted to the case that data is input from
file. In the following example we add an array of variable descriptions to the chess problem
introduced in Chapter 1. These descriptions may, for instance, be used for generating a nice
output. Since the array DescrV and its indexing set Allvars are dynamic they grow with each
new variable description that is added to DescrV .

model "Chess 3"
uses "mmxprs"

declarations
Allvars: set of mpvar
DescrV: array(Allvars) of string
small, large: mpvar

end-declarations

DescrV(small):= "Number of small chess sets"
DescrV(large):= "Number of large chess sets"

Profit:= 5*small + 20*large
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Lathe:= 3*small + 2*large <= 160
Boxwood:= small + 3*large <= 200

maximize(Profit)

writeln("Solution:\n Objective: ", getobjval)
writeln(DescrV(small), ": ", getsol(small))
writeln(DescrV(large), ": ", getsol(large))

end-model

The reader may have already remarked another feature that is illustrated by this example: the
indexing set Allvars is of type mpvar . So far only basic types have occurred as index set types
but as mentioned earlier, sets in Mosel may be of any elementary type, including the MP types
mpvar and linctr .

8.2 Working with sets

In all examples of sets given so far sets are used for indexing other modeling objects. But they
may also be used for different purposes.

The following example demonstrates the use of basic set operations in Mosel: union (+), inter-
section (* ), and difference (- ):

model "Set example"

declarations
Cities={"rome", "bristol", "london", "paris", "liverpool"}
Ports={"plymouth", "bristol", "glasgow", "london", "calais",

"liverpool"}
Capitals={"rome", "london", "paris", "madrid", "berlin"}

end-declarations

Places:= Cities+Ports+Capitals ! Create the union of all 3 sets
In_all_three:= Cities*Ports*Capitals ! Create the intersection of all 3 sets
Cities_not_cap:= Cities-Capitals ! Create the set of all cities that are

! not capitals

writeln("Union of all places: ", Places)
writeln("Intersection of all three: ", In_all_three)
writeln("Cities that are not capitals: ", Cities_not_cap)

end-model

The output of this example will look as follows:

Union of all places:{‘rome’,‘bristol’,‘london’,‘paris’,‘liverpool’,
‘plymouth’,‘bristol’,‘glasgow’,‘calais’,‘liverpool’,‘rome’,‘paris’,
‘madrid’,‘berlin’}
Intersection of all three: {‘london’}
Cities that are not capitals: {‘bristol’,‘liverpool}

Sets in Mosel are indeed a powerful facility for programming as in the following example that
calculates all prime numbers between 2 and some given limit.

Starting with the smallest one, the algorithm takes every element of a set of numbers SNum-
bers (positive numbers between 2 and some upper limit that may be specified when running
the model), adds it to the set of prime numbers SPrime and removes the number and all its
multiples from the set SNumbers.
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model Prime

parameters
LIMIT=100 ! Search for prime numbers in 2..LIMIT

end-parameters

declarations
SNumbers: set of integer ! Set of numbers to be checked
SPrime: set of integer ! Set of prime numbers

end-declarations

SNumbers:={2..LIMIT}

writeln("Prime numbers between 2 and ", LIMIT, ":")

n:=2
repeat

while (not(n in SNumbers)) n+=1
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples

SNumbers-= {i}
i+=n

end-do
until SNumbers={}

writeln(SPrime)
writeln(" (", getsize(SPrime), " prime numbers.)")

end-model

This example uses a new function, getsize , that if applied to a set returns the number of
elements of the set. The condition in the while loop is the logical negation of an expression,
marked with not : the loop is repeated as long as the condition n in SNumbers is not satisfied.

8.2.1 Set operators

The preceding example introduces the operator += to add sets to a set (there is also an operator
-= to remove subsets from a set). Another set operator used in the example is in denoting
that a single object is contained in a set. We have already encountered this operator in the
enumeration of indices for the forall loop.

Mosel also defines the standard operators for comparing sets: subset (<=), superset (>=), dif-
ference (<>), end equality (=). Their use is illustrated by the following example:

model "Set comparisons"

declarations
RAINBOW = {"red", "orange", "yellow", "green", "blue", "purple"}
BRIGHT = {"yellow", "orange"}
DARK = {"blue", "brown", "black"}

end-declarations

writeln("BRIGHT is included in RAINBOW: ", BRIGHT <= RAINBOW)
writeln("RAINBOW is a superset of DARK: ", RAINBOW >= DARK)
writeln("BRIGHT is different from DARK: ", BRIGHT <> DARK)
writeln("BRIGHT is the same as RAINBOW: ", BRIGHT = RAINBOW)

end-model

As one might have expected, this example produces the following output:

BRIGHT is included in RAINBOW: true
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RAINBOW is a superset of DARK: false
BRIGHT is different from DARK: true
BRIGHT is the same as RAINBOW: false
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Chapter 9

Functions and procedures

When programs grow larger than the small examples presented so far, it becomes necessary to
introduce some structure that makes them easier to read and to maintain. Usually, this is done
by dividing the tasks that have to be executed into subtasks which may again be subdivided,
and indicating the order in which these subtasks have to be executed and which are their
activation conditions. To facilitate this structured approach, Mosel provides the concept of
subroutines. Using subroutines, longer and more complex programs can be broken down into
smaller subtasks that are easier to understand and to work with. Subroutines may be employed
in the form of procedures or functions. Procedures are called as a program statement, they
have no return value, functions must be called in an expression that uses their return value.

Mosel provides a set of predefined subroutines (for a comprehensive documentation the reader
is referred to the Mosel Reference Manual), and it is possible to define new functions and pro-
cedures according to the needs of a specific program. A procedure that has occured repeatedly
in this document is writeln. Typical examples of functions are mathematical functions like abs ,
floor , ln , sin etc.

9.1 Subroutine definition

User defined subroutines in Mosel have to be marked with procedure / end-procedure and
function / end-function respectively. The return value of a function has to be assigned to
returned as shown in the following example.

model "Simple subroutines"

declarations
a:integer

end-declarations

function three:integer
returned := 3

end-function

procedure print_start
writeln("The program starts here.")

end-procedure

print_start
a:=three
writeln("a = ", a)

end-model

This program will produce the following output:

The program starts here.
a = 3
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9.2 Parameters

In many cases, the actions to be performed by a procedure or the return value expected from
a function depend on the current value of one or several objects in the calling program. It is
therefore possible to pass parameters into a subroutine. The (list of) parameter(s) is added in
parantheses behind the name of the subroutine:

function times_two(b:integer):integer
returned := 2*b

end-function

The structure of subroutines being very similar to the one of model , they may also include
declarations sections for declaring local parameters that are only valid in the correspond-
ing subroutine. It should be noted that such local parameters may mask global parameters
within the scope of a subroutine, but they have no effect on the definition of the global pa-
rameter outside of the subroutine as is shown below in the extension of the example ‘Simple
subroutines’. Whilst it is not possible to modify function/procedure parameters in the corre-
sponding subroutine, as in other programming languages the declaration of local parameters
may hide these parameters. Mosel considers this as a possible mistake and prints a warning
during compilation (without any consequence for the execution of the program).

model "Simple subroutines"

declarations
a:integer

end-declarations

function three:integer
returned := 3

end-function

function times_two(b:integer):integer
returned := 2*b

end-function

procedure print_start
writeln("The program starts here.")

end-procedure

procedure hide_a_1
declarations

a: integer
end-declarations

a:=7
writeln("Procedure hide_a_1: a = ", a)

end-procedure

procedure hide_a_2(a:integer)
writeln("Procedure hide_a_2: a = ", a)

end-procedure

procedure hide_a_3(a:integer)
declarations

a: integer
end-declarations

a := 15
writeln("Procedure hide_a_3: a = ", a)

end-procedure

print_start
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a:=three
writeln("a = ", a)
a:=times_two(a)
writeln("a = ", a)
hide_a_1
writeln("a = ", a)
hide_a_2(-10)
writeln("a = ", a)
hide_a_3(a)
writeln("a = ", a)

end-model

During the compilation we get the warning

Mosel: W-165 at (30,3) of ‘subrout.mos’: Declaration of ‘a’ hides a parameter.

This is due to the redefinition of the parameter in procedure hide_a_3 . The program results
in the following output:

The program starts here.
a = 3
a = 6
Procedure hide_a_1: a = 7
a = 6
Procedure hide_a_2: a = -10
a = 6
Procedure hide_a_3: a = 15
a = 6

9.3 Recursion

The following example returns the largest common divisor of two numbers, just like the exam-
ple ‘Lcdiv1’ in the previous chapter. This time we implement this task using recursive function
calls, that is, from within function lcdiv we call again function lcdiv .

model Lcdiv2

function lcdiv(A,B:integer):integer
if(A=B) then

returned:=A
elif(A>B) then

returned:=lcdiv(B,A-B)
else

returned:=lcdiv(A,B-A)
end-if

end-function

declarations
A,B: integer

end-declarations

write("Enter two integer numbers:\n A: ")
readln(A)
write(" B: ")
readln(B)

writeln("Largest common divisor: ", lcdiv(A,B))

end-model

This example uses a simple recursion (a subroutine calling itself). In Mosel, it is also possible
to use cross-recursion, that is, subroutine A calls subroutine B which again calls A. The only
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pre-requisite is that any subroutine that is called prior to its definition must be declared before
it is called by using the forward statement (see below).

9.4 forward

A subroutine has to be ‘known’ at the place where it is called in a program. In the preceding
examples we have defined all subroutines at the start of the programs but this may not always
be feasible or desirable. Mosel therefore enables the user to declare a subroutine seperately
from its definition by using the keyword forward . The declaration of of a subroutine states
its name, the parameters (type and name) and, in the case of a function, the type of the
return value. The definition that must follow later in the program contains the body of the
subroutine, that is, the actions to be executed by the subroutine.

The following example implements a quick sort algorithm for sorting a randomly generated
array of numbers into ascending order. The procedure qsort that starts the sorting algorithm
is defined at the very end of the program, it therefore needs to be declared at the beginning,
before it is called. Procedure qsort_start calls the main sorting routine, qsort . Since the
definition of this procedure precedes the place where it is called there is no need to declare it
(but it still could be done). Procedure qsort calls yet again another subroutine, swap.

The idea of the quick sort algorithm is to partition the array that is to be sorted into two parts.
The ‘left’ part containing all values smaller than the partitioning value and the ‘right’ part all
the values that are larger than this value. The partitioning is then applied to the two subarrays,
and so on, until all values are sorted.

model "Quick sort 1"

parameters
LIM=50

end-parameters

forward procedure qsort_start(L:array(range) of integer)

declarations
T:array(1..LIM) of integer

end-declarations

forall(i in 1..LIM) T(i):=round(.5+random*LIM)
writeln(T)
qsort_start(T)
writeln(T)

! Swap the positions of two numbers in an array
procedure swap(L:array(range) of integer,i,j:integer)

k:=L(i)
L(i):=L(j)
L(j):=k

end-procedure

! Main sorting routine
procedure qsort(L:array(range) of integer,s,e:integer)

v:=L((s+e) div 2) ! Determine the partitioning value
i:=s; j:=e
repeat ! Partition into two subarrays

while(L(i)<v) i+=1
while(L(j)>v) j-=1
if i<j then

swap(L,i,j)
i+=1; j-=1

end-if
until i>=j
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! Recursively sort the two subarrays
if j<e and s<j then qsort(L,s,j); end-if
if i>s and i<e then qsort(L,i,e); end-if

end-procedure

! Start of the sorting process
procedure qsort_start(L:array(r:range) of integer)

qsort(L,getfirst(r),getlast(r))
end-procedure

end-model

The quick sort example above demonstrates typical uses of subroutines, namely grouping ac-
tions that are executed repeatedly (qsort ) and isolating subtasks (swap) in order to structure
a program and increase its readability.

The calls to the procedures in this example are nested (procedure swap is called from qsort
which is called from qsort_start ): in Mosel there is no limit as to the number of nested calls
to subroutines (it is not possible, though, to define subroutines within a subroutine).

9.5 Overloading of subroutines

In Mosel, it is possible to re-use the names of subroutines, provided that every version has a
different number and/or types of parameters. This functionality is commonly referred to as
overloading.

An example of an overloaded function in Mosel is getsol : if a variable is passed as a parameter
it returns its solution value, if the parameter is a constraint the function returns the evaluation
of the corresponding linear expression using the current solution.

Function abs (for obtaining the absolute value of a number) has different return types de-
pending on the type of the input parameter: if an integer is input it returns an integer value,
if it is called with a real value as input parameter it returns a real.

Function getcoeff is an example of a function that takes different numbers of parameters:
if called with a single parameter (of type linctr ) it returns the constant term of the input
constraint, if a constraint and a variable are passed as parameters it returns the coefficient of
the variable in the given constraint.

The user may define (additional) overloaded versions of any subroutines defined by Mosel as
well as for his own functions and procedures. Note that it is not possible to overload a function
with a procedure and vice versa.

Using the possibility to overload subroutines, we may rewrite the preceding example ‘Quick
sort’ as follows.

model "Quick sort 2"

parameters
LIM=50

end-parameters

forward procedure qsort(L:array(range) of integer)

declarations
T:array(1..LIM) of integer

end-declarations

forall(i in 1..LIM) T(i):=round(.5+random*LIM)
writeln(T)
qsort(T)
writeln(T)
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procedure swap(L:array(range) of integer,i,j:integer)
(...) (same procedure body as in the preceding example)

end-procedure

procedure qsort(L:array(range) of integer,s,e:integer)
(...) (same procedure body as in the preceding example)

end-procedure

! Start of the sorting process
procedure qsort(L:array(r:range) of integer)

qsort(L,getfirst(r),getlast(r))
end-procedure

end-model

The procedure qsort_start is now also called qsort . The procedure bearing this name in the
first implementation keeps its name too; it has got two additional parameters which suffice
to ensure that the right version of the procedure is called. To the contrary, it is not possible
to give procedure swap the same name qsort because it takes exactly the same parameters
as the original procedure qsort and hence it would not be possible to differentiate between
these two procedures any more.
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Chapter 10

Output

10.1 Producing formatted output

In some of the previous examples the procedures write and writeln have been used for
displaying data, solution values and some accompanying text. To produce better formatted
output, these procedures can be combined with the formatting procedure strfmt . In its sim-
plest form, strfmt ’s second argument indicates the (minimum) space reserved for writing the
first argument and its placement within this space (negative values mean left justified print-
ing, positive right justified). When writing a real , a third argument may be used to specify
the maximum number of digits after the decimal point.

For example, if file fo.mos contains

model FO
parameters

r = 1.0 ! A real
i = 0 ! An integer

end-parameters

writeln("i is ", i)
writeln("i is ", strfmt(i,6) )
writeln("i is ", strfmt(i,-6) )
writeln("r is ", r)
writeln("r is ", strfmt(r,6) )
writeln("r is ",strfmt(r,10,4) )

end-model

and we run Mosel thus:

mosel -s -c "exec fo ’i=123, r=1.234567’"

we get output

i is 123
i is 123
i is 123
r is 1.23457
r is 1.23457
r is 1.2346

The following example prints out the solution of model ‘Transport’ (Section 3.1) in table for-
mat. The reader may be reminded that the objective of this problem is to compute the product
flows from a set of plants (PLANT) to a set of sales regions (REGION) so as to minimize the total
cost. The solution needs to comply with the capacity limits of the plants (PLANTCAP) and satisfy
the demand DEMANDof all regions.
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procedure print_table

declarations
rsum: array(REGION) of integer ! Auxiliary data table for printing
psum,prsum,ct,iflow: integer ! Counters

end-declarations

! Print heading and the first line of the table
writeln("\nProduct Distribution\n--------------------")
writeln(strfmt("Sales Region",44))
write(strfmt("",14))
forall(r in REGION) write(strfmt(r,9))
writeln(strfmt("TOTAL",9), " Capacity")

! Print the solution values of the flow variables and
! calculate totals per region and per plant

ct:=0
forall(p in PLANT) do

ct += 1
if ct=2 then

write("Plant ",strfmt(p,-8))
else

write(" ",strfmt(p,-8))
end-if
psum:=0
forall(r in REGION) do

iflow:=integer(getsol(flow(p,r)))
psum += iflow
rsum(r) += iflow
if iflow<>0 then

write(strfmt(iflow,9))
else

write(" ")
end-if

end-do
writeln(strfmt(psum,9), strfmt(integer(PLANTCAP(p)),9))

end-do

! Print the column totals
write("\n", strfmt("TOTAL",-14))
prsum:=0
forall(r in REGION) do

prsum += rsum(r);
write(strfmt(rsum(r),9))

end-do
writeln(strfmt(prsum,9))

! Print demand of every region
write(strfmt("Demand",-14))
forall(r in REGION) write(strfmt(integer(DEMAND(r)),9))

! Print objective function value
writeln("\n\nTotal cost of distribution = ", strfmt(getobjval/1e6,0,3),

" million.")

end-procedure

With the data from Chapter 3 the procedure print_table produces the following output:
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Product Distribution
--------------------

Sales Region
Scotland North SWest SEast Midlands TOTAL Capacity

Corby 180 820 2000 3000 3000
Plant Deeside 1530 920 250 2700 2700

Glasgow 2840 1270 4110 4500
Oxford 1500 2000 500 4000 4000

TOTAL 2840 2800 2600 2820 2750 13810
Demand 2840 2800 2600 2820 2750

Total cost of distribution = 81.018 million.

10.2 File output

If we do not want the output of procedure print_tab in the previous section to be displayed
on screen but to be saved in the file out.txt , we simply open the file for writing at the
beginning of the procedure by adding

fopen("out.txt",F_OUTPUT)

before the first writeln statement, and close it at the end of the procedure, after the last
writeln statement with

fclose(F_OUTPUT)

If we do not want any existing contents of the file out.txt to be deleted, so that the result
table is appended to the end of the file, we need to write the following for opening the file
(closing it the same way as before):

fopen("out.txt",F_OUTPUT+F_APPEND)

As with input of data from file, there are several ways of outputting data (e.g. solution values)
to a file in Mosel. The following example demonstrates three different ways of writing the
contents of an array A to a file.

model "Trio output"
uses "mmetc"

declarations
A: array(1..3,1..3) of real

end-declarations

A := [ 2, 4, 6,
12, 14, 16,
22, 24, 26]

! First method: use an initializations block
initializations to "out_1.dat"

A as "MYOUT"
end-initializations

! Second method: use the built-in writeln function
fopen("out_2.dat",F_OUTPUT)
forall(i,j in 1..3)

writeln(’A_out(’,i,’ and ’,j,’) = ’, A(i,j))
fclose(F_OUTPUT)

! Third method: use diskdata
diskdata(ETC_OUT+ETC_SPARSE,"out_3.dat", A)

end-model
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File out_1.dat will contain the following:

’MYOUT’: [2 4 6 12 14 16 22 24 26]

If this file contains already a data entry myout , it is replaced with this output without modifying
or deleting any other contents of this file. Otherwise, the output is appended at the end of it.

The nicely formatted output to out_2.dat results in the following:

A_out(1 and 1) = 2
A_out(1 and 2) = 4
A_out(1 and 3) = 6
A_out(2 and 1) = 12
A_out(2 and 2) = 14
A_out(2 and 3) = 16
A_out(3 and 1) = 22
A_out(3 and 2) = 24
A_out(3 and 3) = 26

The output with diskdata simply prints the contents of the array to out_3.dat , with option
ETC_SPARSEeach entry is preceded by the corresponding indices:

1,1,2
1,2,4
1,3,6
2,1,12
2,2,14
2,3,16
3,1,22
3,2,24
3,3,26

Without option ETC_SPARSE out_3.dat looks as follows:

2,4,6
12,14,16
22,24,26
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Chapter 11

More about Integer Programming

This chapter presents two applications to (Mixed) Integer Programming of the programming
facilities in Mosel that have been introduced in the previous chapters.

11.1 Cut generation

Cutting plane methods add constraints (cuts) to the problem that cut off parts of the convex
hull of the integer solutions, thus drawing the solution of the LP relaxation closer to the integer
feasible solutions and improving the bound provided by the solution of the relaxed problem.

The Xpress-Optimizer provides automated cut generation (see the optimizer documentation
for details). To show the effects of the cuts that are generated by our example we switch off
the automated cut generation.

11.1.1 Example problem

The problem we want to solve is the following: a large company is planning to outsource the
cleaning of its offices at the least cost. The NSITES office sites of the company are grouped into
areas (set AREAS = {1, . . . , NAREAS}). Several professional cleaning companies (set CONTR =
{1, . . . , NCONTRACTORS}) have submitted bids for the different sites, a cost of 0 in the data
meaning that a contractor is not bidding for a site.

To avoid being dependent on a single contractor, adjacent areas have to be allocated to differ-
ent contractors. Every site s (s in SITES = {1, . . . , NSITES}) is to be allocated to a single contractor,
but there may be between LOWCONa and UPPCONa contractors per area a.

11.1.2 Model formulation

For the mathematical formulation of the problem we introduce two sets of variables:

cleancs indicates whether contractor c is cleaning site s
allocca indicates whether contractor c is allocated any site in area a

The objective to minimize the total cost of all contracts is as follows (where PRICEsc is the price
per site and contractor):

minimize
∑

c∈CONTR

∑
s∈SITES

PRICEsc · cleancs

We need the following three sets of constraints to formulate the problem:

1. Each site must be cleaned by exactly one contractor.

∀s ∈ SITES :
∑

c∈CONTR

cleancs = 1
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2. Adjacent areas must not be allocated to the same contractor.

∀c ∈ CONTR, a, b ∈ AREAS, a > b and ADJACENT(a, b) = 1 : allocca + alloccb ≤ 1

3. The lower and upper limits on the number of contractors per area must be respected.

∀a ∈ AREAS :
∑

c∈CONTR

allocca ≥ LOWCONa

∀a ∈ AREAS :
∑

c∈CONTR

allocca ≤ UPPCONa

To express the relation between the two sets of variables we need more constraints: a contrac-
tor c is allocated to an area a if and only if he is allocated a site s in this area, that is, yca is 1 if
and only if some xcs (for a site s in area a) is 1. This equivalence is expressed by the following
two sets of constraints, one for each sense of the implication (AREAs is the area a site s belongs
to and NUMSITEa the number of sites in area a):

∀c ∈ CONTR, a ∈ AREAS : allocca ≤
∑

s∈SITES
AREAs=a

cleancs

∀c ∈ CONTR, a ∈ AREAS : allocca ≥
1

NUMSITEa
·
∑

s∈SITES
AREAs=a

cleancs

11.1.3 Implementation

The resulting Mosel program is the following. The variables cleancs are defined as a dynamic
array and are only created if contractor c bids for site s (that is, PRICEsc > 0 or, taking into
account inaccuracies in the data, PRICEsc > 0. 01).

Another implementation detail that the reader may notice is the separate initialization of the
array sizes: we are thus able to create all arrays with fixed sizes (with the exception of the
previously mentioned array of variables that is explicitly declared dynamic). This allows Mosel
to handle them in a more efficient way.

model "Office cleaning"
uses "mmxprs","mmsystem"

declarations
PARAM: array(1..3) of integer

end-declarations

initializations from ’clparam.dat’
PARAM

end-initializations

declarations
NSITES = PARAM(1) ! Number of sites
NAREAS = PARAM(2) ! Number of areas (subsets of sites)
NCONTRACTORS = PARAM(3) ! Number of contractors
AREAS = 1..NAREAS
CONTR = 1..NCONTRACTORS
SITES = 1..NSITES
AREA: array(SITES) of integer ! Area site is in
NUMSITE: array(AREAS) of integer ! Number of sites in an area
LOWCON: array(AREAS) of integer ! Lower limit on the number of

! contractors per area
UPPCON: array(AREAS) of integer ! Upper limit on the number of

! contractors per area
ADJACENT: array(AREAS,AREAS) of integer ! 1 if areas adjacent, 0 otherwise
PRICE: array(SITES,CONTR) of real ! Price per contractor per site
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clean: dynamic array(CONTR,SITES) of mpvar ! 1 iff contractor c cleans site s
alloc: array(CONTR,AREAS) of mpvar ! 1 iff contractor allocated to a site

! in area a
end-declarations

initializations from ’cldata.dat’
[NUMSITE,LOWCON,UPPCON] as ’AREA’
ADJACENT
PRICE

end-initializations

ct:=1
forall(a in AREAS) do

forall(s in ct..ct+NUMSITE(a)-1)
AREA(s):=a

ct+= NUMSITE(a)
end-do

forall(c in CONTR, s in SITES | PRICE(s,c) > 0.01) create(clean(c,s))

! Objective: Minimize total cost of all cleaning contracts
Cost:= sum(c in CONTR, s in SITES) PRICE(s,c)*clean(c,s)

! Each site must be cleaned by exactly one contractor
forall(s in SITES) sum(c in CONTR) clean(c,s) = 1

! Ban same contractor from serving adjacent areas
forall(c in CONTR, a,b in AREAS | a > b and ADJACENT(a,b) = 1)

alloc(c,a) + alloc(c,b) <= 1

! Specify lower & upper limits on contracts per area
forall(a in AREAS | LOWCON(a)>0)

sum(c in CONTR) alloc(c,a) >= LOWCON(a)
forall(a in AREAS | UPPCON(a)<NCONTRACTORS)

sum(c in CONTR) alloc(c,a) <= UPPCON(a)

! Define alloc(c,a) to be 1 iff some clean(c,s)=1 for sites s in area a
forall(c in CONTR, a in AREAS) do

alloc(c,a) <= sum(s in SITES| AREA(s)=a) clean(c,s)
alloc(c,a) >= 1.0/NUMSITE(a) * sum(s in SITES| AREA(s)=a) clean(c,s)

end-do

forall(c in CONTR) do
forall(s in SITES) clean(c,s) is_binary
forall(a in AREAS) alloc(c,a) is_binary

end-do

minimize(Cost) ! Solve the MIP problem
end-model

In the preceding model, we have chosen to implement the constraints that force the variables
allocca to become 1 whenever a variable cleancs is 1 for some site s in area a in an aggregated
way (this type of constraint is usually referred to as Multiple Variable Lower Bound, MVLB,
constraints). Instead of

forall(c in CONTR, a in AREAS)
alloc(c,a) >= 1.0/NUMSITE(a) * sum(s in SITES| AREA(s)=a) clean(c,s)

we could also have used the stronger formulation

forall(c in CONTR, s in SITES)
alloc(c,AREA(s)) >= clean(c,s)
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but this considerably increases the total number of constraints. The aggregated constraints are
sufficient to express this problem, but this formulation is very loose, with the consequence that
the solution of the LP relaxation only provides a very bad approximation of the integer solution
that we want to obtain. For large data sets the Branch-and-Bound search may therefore take
a long time.

11.1.4 Cut-and-Branch

To improve this situation without blindly adding many unnecessary constraints, we implement
a cut generation loop at the top node of the search that only adds those constraints that are
violated be the current LP solution.

The cut generation loop (procedure top_cut_gen ) performs the following steps:

• solve the LP and save the basis

• get the solution values

• identify violated constraints and add them to the problem

• load the modified problem and load the previous basis

procedure top_cut_gen
declarations

MAXCUTS = 2500 ! Max no. of constraints added in total
MAXPCUTS = 1000 ! Max no. of constraints added per pass
MAXPASS = 50 ! Max no. passes
ncut, npass, npcut: integer ! Counters for cuts and passes
feastol: real ! Zero tolerance
solc: array(CONTR,SITES) of real ! Sol. values for variables ‘clean’
sola: array(CONTR,AREAS) of real ! Sol. values for variables ‘alloc’
objval,starttime: real
cut: array(range) of linctr

end-declarations

starttime:=gettime
setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
feastol:= getparam("XPRS_FEASTOL") ! Get the Optimizer zero tolerance
setparam("ZEROTOL", feastol * 10) ! Set the comparison tolerance of Mosel
ncut:=0
npass:=0

while (ncut<MAXCUTS and npass<MAXPASS) do
npass+=1
npcut:= 0
minimize(XPRS_LIN, Cost) ! Solve the LP
if (npass>1 and objval=getobjval) then break; end-if
savebasis(1) ! Save the current basis
objval:= getobjval ! Get the objective value

forall(c in CONTR) do ! Get the solution values
forall(a in AREAS) sola(c,a):=getsol(alloc(c,a))
forall(s in SITES) solc(c,s):=getsol(clean(c,s))

end-do

! Search for violated constraints and add them to the problem:
forall(c in CONTR, s in SITES)

if solc(c,s) > sola(c,AREA(s)) then
cut(ncut):= alloc(c,AREA(s)) >= clean(c,s)
ncut+=1
npcut+=1
if (npcut>MAXPCUTS or ncut>MAXCUTS) then break 2; end-if

end-if
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writeln("Pass ", npass, " (", gettime-starttime, " sec), objective value ",
objval, ", cuts added: ", npcut, " (total ", ncut,")")

if npcut=0 then
break

else
loadprob(Cost) ! Reload the problem
loadbasis(1) ! Load the saved basis

end-if
end-do

! Display cut generation status
write("Cut phase completed: ")
if (ncut >= MAXCUTS) then writeln("space for cuts exhausted")
elif (npass >= MAXPASS) then writeln("maximum number of passes reached")
else writeln("no more violations or no improvement to objective")
end-if

end-procedure

Assuming we add the definition of procedure top_cut_gen to the end of our model, we need
to add its declaration at the beginning of the model:

forward procedure topcutgen

and the call to this function immediately before the optimization:

top_cut_gen ! Constraint generation at top node

minimize(Cost) ! Solve the MIP problem

Since we wish to use our own cut strategy, we switch off the default cut generation in Xpress-
Optimizer:

setparam("XPRS_CUTSTRATEGY", 0)

We also turn the presolve off since we wish to access the solution to the original problem after
solving the LP-relaxations:

setparam("XPRS_PRESOLVE", 0)

11.1.5 Comparison tolerance

In addition to the parameter settings we also retrieve the feasibility tolerance used by Xpress-
Optimizer: the Optimizer works with tolerance values for integer feasibility and solution fea-
sibility that are typically of the order of 10−6 by default. When evaluating a solution, for
instance by performing comparisons, it is important to take into account these tolerances.

After retrieving the feasibility tolerance of the Optimizer we set the comparison tolerance of
Mosel (ZEROTOL) to this value. This means, for example, the test x = 0 evaluates to true if x lies
between -ZEROTOL and ZEROTOL, x ≤ 0 is true if the value of x is at most ZEROTOL, and x > 0
is fulfilled if x is greater than ZEROTOL.

Comparisons in Mosel always use a tolerance, with a very small default value. By resetting this
parameter to the Optimizer feasibility tolerance Mosel evaluates solution values just like the
Optimizer.

11.1.6 Branch-and-Cut

The cut generation loop presented in the previous subsection only generates violated inqual-
ities at the top node before entering the Branch-and-Bound search and adds them to the
problem in the form of additional constraints. We may do the same using the cut manager
of Xpress-Optimizer. In this case, the violated constraints are added to the problem via the
cut pool. We may even generate and add cuts during the Branch-and-Bound search. A cut
added at a node using addcuts only applies to this node and its descendants, so one may use
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this functionality to define local cuts (however, in our example, all generated cuts are valid
globally).

The cut manager is set up with a call to procedure tree_cut_gen before starting the optimiza-
tion (preceded by the declaration of the procedure using forward earlier in the program). To
avoid initializing the solution arrays and the feasibility tolerance repeatedly, we now turn these
into globally defined objects:

declarations
feastol: real ! Zero tolerance
solc: array(CONTR,SITES) of real ! Sol. values for variables ‘clean’
sola: array(CONTR,AREAS) of real ! Sol. values for variables ‘alloc’

end-declarations

tree_cut_gen ! Set up cut generation in B&B tree
minimize(Cost) ! Solve the MIP problem

As we have seen before, procedure tree_cut_gen disables the default cut generation and
turns presolve off. It also indicates the number of extra rows to be reserved in the matrix for
the cuts we are generating:

procedure tree_cut_gen
setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
setparam("XPRS_EXTRAROWS", 5000) ! Reserve extra rows in matrix

feastol:= getparam("XPRS_FEASTOL") ! Get the zero tolerance
setparam("zerotol", feastol * 10) ! Set the comparison tolerance of Mosel

setcallback(XPRS_CB_CM, "cb_node")
end-procedure

The last line of this procedure defines the cut manager entry callback function that will be
called by the optimizer from every node of the Branch-and-Bound search tree. This cut gener-
ation routine (function cb_node ) performs the following steps:

• get the solution values

• identify violated inequalities and add them to the problem

It is implemented as follows (we restrict the generation of cuts to the first three levels, i.e.
depth < 4 , of the search tree):

function cb_node:boolean

declarations
ncut: integer ! Counters for cuts
cut: array(range) of linctr ! Cuts
cutid: array(range) of integer ! Cut type identification
type: array(range) of integer ! Cut constraint type

end-declarations

returned:=false ! Call this function once per node

depth:=getparam("XPRS_NODEDEPTH")
node:=getparam("XPRS_NODES")

if depth<4 then
ncut:=0

! Get the solution values
setparam("XPRS_SOLUTIONFILE",0)
forall(c in CONTR) do
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forall(a in AREAS) sola(c,a):=getsol(alloc(c,a))
forall(s in SITES) solc(c,s):=getsol(clean(c,s))

end-do
setparam("XPRS_SOLUTIONFILE",1)

! Search for violated constraints
forall(c in CONTR, s in SITES)

if solc(c,s) > sola(c,AREA(s)) then
cut(ncut):= alloc(c,AREA(s)) - clean(c,s)
cutid(ncut):= 1
type(ncut):= CT_GEQ
ncut+=1

end-if

! Add cuts to the problem
if ncut>0 then

returned:=true ! Call this function again
addcuts(cutid, type, cut);
writeln("Cuts added : ", ncut, " (depth ", depth, ", node ", node,

", obj. ", getparam("XPRS_LPOBJVAL"), ")")
end-if

end-if

end-function

The prototype of this function is prescribed by the type of the callback (see the Xpress-Optimizer
Reference Manual and the chapter on mmxprs in the Mosel Language Reference Manual). At
every node this function is called repeatedly, followed by a re-solution of the current LP, as
long as it returns true .

Remark: if one wishes to access the solution values in a callback function, the Xpress-Optimizer
parameter XPRS_SOLUTIONFILEmust be set to 0 before getting the solution and after getting
the solutions it must be set back to 1.

11.2 Column generation

The technique of column generation is used for solving linear problems with a huge number of
variables for which it is not possible to generate explicitly all columns of the problem matrix.
Starting with a very restricted set of columns, after each solution of the problem a column
generation algorithm adds one or several columns that improve the current solution. These
columns must have a negative reduced cost (in a minimization problem) and are calculated
based on the dual value of the current solution.

For solving large MIP problems, column generation typically has to be combined with a Branch-
and-Bound search, leading to a so-called Branch-and-Price algorithm. The example problem
described below is solved by solving a sequence of LPs without starting a tree search.

11.2.1 Example problem

A paper mill produces rolls of paper of a fixed width MAXWIDTH that are subsequently cut into
smaller rolls according to the customer orders. The rolls can be cut into NWIDTHS different
sizes. The orders are given as demands for each width i (DEMANDi). The objective of the
paper mill is to satisfy the demand with the smallest possible number of paper rolls in order to
minimize the losses.

11.2.2 Model formulation

The objective of minimizing the total number of rolls can be expressed as choosing the best set
of cutting patterns for the current set of demands. Since it may not be obvious how to calculate
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all possible cutting patterns by hand, we start off with a basic set of patterns (PATTERNS1,...,
PATTERNSNWIDTH), that consists of cutting small rolls all of the same width as many times as
possible out of the large roll. This type of problem is called a cutting stock problem.

If we define variables usej to denote the number of times a cutting pattern j (j ∈ WIDTHS =
{1, . . . , NWIDTH}) is used, then the objective becomes to minimize the sum of these variables,
subject to the constraints that the demand for every size has to be met.

minimize
∑

j∈WIDTHS

usej∑
j∈WIDTHS

PATTERNSij · usej ≥ DEMANDi

∀j ∈WIDTHS : usej ≤ ceil(DEMANDj / PATTERNSjj), usej integer

Function ceil means rounding to the next larger integer value.

11.2.3 Implementation

The first part of the Mosel model implementing this problem looks as follows:

model Papermill
uses "mmxprs"

forward procedure column_gen
forward function knapsack(C:array(range) of real, A:array(range) of real,

B:real, xbest:array(range) of integer,
pass: integer): real

forward procedure show_new_pat(dj:real, vx: array(range) of integer)

declarations
NWIDTHS = 5 ! Number of different widths
WIDTHS = 1..NWIDTHS ! Range of widths
RP: range ! Range of cutting patterns
MAXWIDTH = 94 ! Maximum roll width
EPS = 1e-6 ! Zero tolerance

WIDTH: array(WIDTHS) of real ! Possible widths
DEMAND: array(WIDTHS) of integer ! Demand per width
PATTERNS: array(WIDTHS,WIDTHS) of integer ! (Basic) cutting patterns

use: array(RP) of mpvar ! Rolls per pattern
soluse: array(RP) of real ! Solution values for variables ‘use’
Dem: array(WIDTHS) of linctr ! Demand constraints
MinRolls: linctr ! Objective function

KnapCtr, KnapObj: linctr ! Knapsack constraint+objective
x: array(WIDTHS) of mpvar ! Knapsack variables

end-declarations

WIDTH:= [ 17, 21, 22.5, 24, 29.5]
DEMAND:= [150, 96, 48, 108, 227]

! Make basic patterns
forall(j in WIDTHS) PATTERNS(j,j) := floor(MAXWIDTH/WIDTH(j))

forall(j in WIDTHS) do
create(use(j)) ! Create NWIDTHS variables ‘use’
use(j) is_integer ! Variables are integer and bounded
use(j) <= integer(ceil(DEMAND(j)/PATTERNS(j,j)))

end-do

MinRolls:= sum(j in WIDTHS) use(j) ! Objective: minimize no. of rolls
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forall(i in WIDTHS) ! Satisfy all demands
Dem(i):= sum(j in WIDTHS) PATTERNS(i,j) * use(j) >= DEMAND(i)

column_gen ! Column generation at top node

minimize(MinRolls) ! Compute the best integer solution
! for the current problem (including
! the new columns)

writeln("Best integer solution: ", getobjval, " rolls")
write(" Rolls per pattern: ")
forall(i in RP) write(getsol(use(i)),", ")

The paper mill can satisfy the demand with just the basic set of cutting patterns, but it is
likely to incur significant losses through wasting more than necessary of every large roll and
by cutting more small rolls than its customers have ordered. We therefore employ a column
generation heuristic to find more suitable cutting patterns.

The following procedure column_gen defines a column generation loop that is executed at
the top node (this heuristic was suggested by M. Savelsbergh for solving a similar cutting stock
problem). The column generation loop performs the following steps:

• solve the LP and save the basis

• get the solution values

• compute a more profitable cutting pattern based on the current solution

• generate a new column (= cutting pattern): add a term to the objective function and to
the corresponding demand constraints

• load the modified problem and load the saved basis

To be able to increase the number of variables usej in this function, these variables have been
declared at the beginning of the program as a dynamic array without specifying any index
range.

By setting Mosel’s comparison tolerance to EPS, the test zbest = 0 checks whether zbest lies
within EPS of 0 (see explanation in Section 11.1).

procedure column_gen
declarations

dualdem: array(WIDTHS) of real
xbest: array(WIDTHS) of integer
dw, zbest, objval: real

end-declarations

setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
setparam("zerotol", EPS) ! Set comparison tolerance of Mosel
npatt:=NWIDTHS
npass:=1

while(true) do
minimize(XPRS_LIN, MinRolls) ! Solve the LP

savebasis(1) ! Save the current basis
objval:= getobjval ! Get the objective value

! Get the solution values
forall(j in 1..npatt) soluse(j):=getsol(use(j))
forall(i in WIDTHS) dualdem(i):=getdual(Dem(i))

! Solve a knapsack problem
zbest:= knapsack(dualdem, WIDTH, MAXWIDTH, xbest, npass) - 1.0
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write("Pass ", npass, ": ")
if zbest = 0 then

writeln("no profitable column found.\n")
break

else
show_new_pat(zbest, xbest) ! Print the new pattern
npatt+=1
create(use(npatt)) ! Create a new var. for this pattern
use(npatt) is_integer

MinRolls+= use(npatt) ! Add new var. to the objective
dw:=0
forall(i in WIDTHS)

if xbest(i) > 0 then
Dem(i)+= xbest(i)*use(npatt) ! Add new var. to demand constr.s
dw:= maxlist(dw, ceil(DEMAND(i)/xbest(i) ))

end-if
use(npatt) <= dw ! Set upper bound on the new var.

loadprob(MinRolls) ! Reload the problem
loadbasis(1) ! Load the saved basis

end-if
npass+=1

end-do

writeln("Solution after column generation: ", objval, " rolls, ",
getsize(RP), " patterns")

write(" Rolls per pattern: ")
forall(i in RP) write(soluse(i),", ")
writeln

end-procedure

The preceding procedure column_gen calls the following auxiliary function knapsack to solve
an integer knapsack problem of the form

maximize z =
∑

j∈WIDTHS

Ci · xj∑
j∈WIDTHS

Aj · xj ≤ B,

∀j ∈WIDTHS : xj integer

The function knapsack solves a second optimization problem that is independent of the main,
cutting stock problem since the two have no variables in common. We thus effectively work
with two problems in a single Mosel model.

For efficiency reasons we have defined the knapsack variables and constraints globally. The in-
tegrality condition on the knapsack variables remains unchanged between several calls to this
function, so we establish it when solving the first knapsack problem. On the other hand, the
knapsack constraint and the objective function have different coefficients at every execution,
so we need to replace them every time the function is called.

We reset the knapsack constraints to 0 at the end of this function so that they do not unnec-
essarily increase the size of the main problem. The same is true in the other sense: hiding the
demand constraints while solving the knapsack problem makes life easier for the optimizer,
but is not essential for getting the correct solution.

function knapsack(C:array(range) of real, A:array(range) of real, B:real,
xbest:array(range) of integer, pass: integer):real

! Hide the demand constraints
forall(j in WIDTHS) sethidden(Dem(j), true)
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! Define the knapsack problem
KnapCtr := sum(j in WIDTHS) A(j)*x(j) <= B
KnapObj := sum(j in WIDTHS) C(j)*x(j)

! Integrality condition
if(pass=1) then

forall(j in WIDTHS) x(j) is_integer
end-if

maximize(KnapObj)
returned:=getobjval
forall(j in WIDTHS) xbest(j):=round(getsol(x(j)))

! Reset knapsack constraint and objective, unhide demand constraints
KnapCtr := 0
KnapObj := 0
forall(j in WIDTHS) sethidden(Dem(j), false)

end-function

To complete the model, we add the following procedure show_new_pat to print every new
pattern we find.

procedure show_new_pat(dj:real, vx: array(range) of integer)
declarations

dw: real
end-declarations

writeln("new pattern found with marginal cost ", dj)
write(" Widths distribution: ")
dw:=0
forall(i in WIDTHS) do

write(WIDTH(i), ":", vx(i), " ")
dw += WIDTH(i)*vx(i)

end-do
writeln("Total width: ", dw)

end-procedure

end-model
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Chapter 12

Extensions to Linear Programming

The two examples (recursion and Goal Programming) in this chapter show how Mosel can be
used to implement extensions of Linear Programming.

12.1 Recursion

Recursion, more properly known as Successive Linear Programming, is a technique whereby
LP may be used to solve certain non-linear problems. Some coefficients in an LP problem are
defined to be functions of the optimal values of LP variables. When an LP problem has been
solved, the coefficients are re-evaluated and the LP re-solved. Under some assumptions this
process may converge to a local (though not necessarily a global) optimum.

12.1.1 Example problem

Consider the following financial planning problem: We wish to determine the yearly interest
rate x so that for a given set of payments we obtain the final balance of 0. Interest is paid
quarterly according to the following formula:

interestt = (92 / 365) · balancet · interest_rate

The balance at time t (t = 1, . . . , T) results from the balance of the previous period t − 1 and
the net of payments and interest:

nett = Paymentst − interestt

balancet = balancet−1 − nett

12.1.2 Model formulation

This problem cannot be modeled just by LP because we have the T products

balancet · interest_rate

which are non-linear. To express an approximation of the original problem by LP we replace
the interest rate variable x by a (constant) guess X of its value and a deviation variable dx

x = X + dx

The formula for the quarterly interest payment it therefore becomes

interestt = 92 / 365 · (balancet−1 · x)

= 92 / 365 · (balancet−1 · (X + dx))

= 92 / 365 · (balancet−1 · X + balancet−1 · dx)
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where balancet is the balance at the beginning of period t.

We now also replace the balance balancet−1 in the product with dx by a guess Bt−1 and a
deviation dbt−1

iinterestt = 92 / 365 · (balancet−1 · X + (Bt−1 + dbt−1) · dx)

= 92 / 365 · (balancet−1 · X + Bt−1 · dx + dbt−1 · dx)

which can be approximated by dropping the product of the deviation variables

interestt = 92 / 365 · (balancet−1 · X + Bt−1 · dx)

To ensure feasibility we add penalty variables eplust and eminust for positive and negative
deviations in the formulation of the constraint:

interestt = 92 / 365 · (balancet−1 · X + Bt−1 · dx + eplust − eminust)

The objective of the problem is to get feasible, that is to minimize the deviations:

minimize
∑

t∈QUARTERS

(eplust + eminust)

12.1.3 Implementation

The Mosel model then looks as follows (note the balance variables balancet as well as the
deviation dx and the quarterly nets nett are defined as free variables, that is, they may take
any values between minus and plus infinity):

model Recurse
uses "mmxprs"

forward procedure solve_recurse

declarations
T=6 ! Time horizon
QUARTERS=1..T ! Range of time periods
P,R,V: array(QUARTERS) of real ! Payments
B: array(QUARTERS) of real ! Initial guess as to balances b(t)
X: real ! Initial guess as to interest rate x

interest: array(QUARTERS) of mpvar ! Interest
net: array(QUARTERS) of mpvar ! Net
balance: array(QUARTERS) of mpvar ! Balance
x: mpvar ! Interest rate
dx: mpvar ! Change to x
eplus, eminus: array(QUARTERS) of mpvar ! + and - deviations

end-declarations

X:= 0.00
B:= [1, 1, 1, 1, 1, 1]
P:= [-1000, 0, 0, 0, 0, 0]
R:= [206.6, 206.6, 206.6, 206.6, 206.6, 0]
V:= [-2.95, 0, 0, 0, 0, 0]

! net = payments - interest
forall(t in QUARTERS) net(t) = (P(t)+R(t)+V(t)) - interest(t)

! Money balance across periods
forall(t in QUARTERS) balance(t) = if(t>1, balance(t-1), 0) - net(t)

forall(t in 2..T) Interest(t):= ! Approximation of interest
-(365/92)*interest(t) + X*balance(t-1) + B(t-1)*dx + eplus(t) - eminus(t) = 0
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Def:= X + dx = x ! Define the interest rate: x = X + dx

Feas:= sum(t in QUARTERS) (eplus(t)+eminus(t)) ! Objective: get feasible

interest(1) = 0 ! Initial interest is zero
forall (t in QUARTERS) net(t) is_free
forall (t in 1..T-1) balance(t) is_free
balance(T) = 0 ! Final balance is zero
dx is_free

minimize(Feas) ! Solve the LP-problem

solve_recurse ! Recursion loop

! Print the solution
writeln("\nThe interest rate is ", getsol(x))
write(strfmt("t",5), strfmt(" ",4))
forall(t in QUARTERS) write(strfmt(t,5), strfmt(" ",3))
write("\nBalances ")
forall(t in QUARTERS) write(strfmt(getsol(balance(t)),8,2))
write("\nInterest ")
forall(t in QUARTERS) write(strfmt(getsol(interest(t)),8,2))

end-model

In the model above we have declared the procedure solve_recurse that executes the recur-
sion but it has not yet been defined. The recursion on x and the balancet (t = 1, . . . , T − 1) is
implemented by the following steps:

(a) The Bt−1 in constraints Interestt get the prior solution value of balancet−1

(b) The X in constraints Interestt get the prior solution value of x
(c) The X in constraint Def gets the prior solution value of x

We say we have converged when the change in dx (variation) is less than 0.000001 (TOLE-
RANCE). By setting Mosel’s comparison tolerance to this value the test variation > 0 checks
whether variation is greater than TOLERANCE.

procedure solve_recurse
declarations

TOLERANCE=0.000001 ! Convergence tolerance
variation: real ! Variation of x
BC: array(QUARTERS) of real

end-declarations

setparam("zerotol", TOLERANCE) ! Set Mosel comparison tolerance
variation:=1.0
ct:=0

while(variation>0) do
savebasis(1) ! Save the current basis
ct+=1
forall(t in 2..T)

BC(t-1):= getsol(balance(t-1)) ! Get solution values for balance(t)’s
XC:= getsol(x) ! and x
write("Round ", ct, " x:", getsol(x), " (variation:", variation,"), ")
writeln("Simplex iterations: ", getparam("XPRS_SIMPLEXITER"))

forall(t in 2..T) do ! Update coefficients
Interest(t)+= (BC(t-1)-B(t-1))*dx
B(t-1):=BC(t-1)
Interest(t)+= (XC-X)*balance(t-1)

end-do
Def+= XC-X
X:=XC
oldxval:=XC ! Store solution value of x
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loadprob(Feas) ! Reload the problem into the optimizer
loadbasis(1) ! Reload previous basis
minimize(Feas) ! Re-solve the LP-problem

variation:= abs(getsol(x)-oldxval) ! Change in dx
end-do

end-procedure

With the initial guesses 0 for X and 1 for all Bt the model converges to an interest rate of
5.94413% (x = 0.0594413).

12.2 Goal Programming

Goal Programming is an extension of Linear Programming in which targets are specified for
a set of constraints. In Goal Programming there are two basic models: the pre-emptive (lex-
icographic) model and the Archimedian model. In the pre-emptive model, goals are ordered
according to priorities. The goals at a certain priority level are considered to be infinitely more
important than the goals at the next level. With the Archimedian model weights or penal-
ties for not achieving targets must be specified, and we attempt to minimize the sum of the
weighted infeasibilities.

If constraints are used to construct the goals, then the goals are to minimize the violation of
the constraints. The goals are met when the constraints are satisfied.

The example in this section demonstrates how Mosel can be used for implementing pre-emptive
Goal Programming with constraints. We try to meet as many goals as possible, taking them in
priority order.

12.2.1 Example problem

The objective is to solve a problem with two variables x and y, the constraint

100 · x + 60 · y ≤ 600

and the three goal constraints

Goal1: 7 · x + 3 · y ≥ 40
Goal2: 10 · x + 5 · y = 60
Goal3: 5 · x + 4 · y ≥ 35

where the order given corresponds to their priorities.

12.2.2 Implementation

To increase readability, the implementation of the Mosel model is organized into three blocks:
the problem is stated in the main part, procedure preemptive implements the solution strat-
egy via preemptive Goal Programming, and procedure print_sol produces a nice solution
printout.

model GoalCtr
uses "mmxprs"

forward procedure preemptive
forward procedure print_sol(i:integer)

declarations
NGOALS=3 ! Number of goals
x,y: mpvar ! Decision variables
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dev: array(1..2*NGOALS) of mpvar ! Deviation from goals
MinDev: linctr ! Objective function
Goal: array(1..NGOALS) of linctr ! Goal constraints

end-declarations

100*x + 60*y <= 600 ! Define a constraint

! Define the goal constraints
Goal(1):= 7*x + 3*y >= 40
Goal(2):= 10*x + 5*y = 60
Goal(3):= 5*x + 4*y >= 35

preemptive ! Pre-emptive Goal Programming

At the end of the main part, we call procedure preemptive to solve this problem by pre-
emptive Goal Programming. In this procedure, the goals are at first entirely removed from the
problem (‘hidden’). We then add them successively to the problem and re-solve it until the
problem becomes infeasible, that is, the deviation variables forming the objective function are
not all 0. Depending on the constraint type (obtained with gettype ) of the goals, we need
one (for inequalities) or two (for equalities) deviation variables.

Let us have a closer look at the first goal (Goal1), a ≥ constraint: the left hand side (all terms
with decision variables) must be at least 40 to satisfy the constraint. To ensure this, we add
a dev2. The goal constraint becomes 7 · x + 3 · y + dev2 ≥ 40 and the objective function is to
minimize dev2. If this is feasible (0-valued objective), then we remove the deviation variable
from the goal, thus turning it into a hard constraint. It is not required to remove it from the
objective since minimization will always force this variable to take the value 0.

We then continue with Goal2: since this is an equation, we need variables for positive and
negative deviations, dev3 and dev4. We add dev4 − dev3 to the constraint, turning it into
10 · x + 5 · y + dev4 − dev3 = 60 and the objective now is to minimize the absolute deviation
dev4 + dev3. And so on.

procedure preemptive

! Remove (=hide) goal constraint from the problem
forall(i in 1..NGOALS) sethidden(Goal(i), true)

i:=0
while (i<NGOALS) do

i+=1
sethidden(Goal(i), false) ! Add (=unhide) the next goal

case gettype(Goal(i)) of ! Add deviation variable(s)
CT_GEQ: do

Deviation:= dev(2*i)
MinDev += Deviation

end-do
CT_LEQ: do

Deviation:= -dev(2*i-1)
MinDev += dev(2*i-1)

end-do
CT_EQ : do

Deviation:= dev(2*i) - dev(2*i-1)
MinDev += dev(2*i) + dev(2*i-1)

end-do
else writeln("Wrong constraint type")

break
end-case
Goal(i)+= Deviation

minimize(MinDev) ! Solve the LP-problem
writeln(" Solution(", i,"): x: ", getsol(x), ", y: ", getsol(y))
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if getobjval>0 then
writeln("Cannot satisfy goal ",i)
break

end-if
Goal(i)-= Deviation ! Remove deviation variable(s) from goal

end-do

print_sol(i) ! Solution printout
end-procedure

The procedure sethidden(c:linctr, b:boolean) has already been used in the previous
chapter (Section 11.2) without giving any further explanation. With this procedure, constraints
can be removed (‘hidden’) from the problem solved by the optimizer without deleting them
in the problem definition. So effectively, the optimizer solves a subproblem of the problem
originally stated in Mosel.

To complete the model, below is the procedure print_sol for printing the results.

procedure print_sol(i:integer)
declarations

STypes={CT_GEQ, CT_LEQ, CT_EQ}
ATypes: array(STypes) of string

end-declarations

ATypes:=[">=", "<=", "="]

writeln(" Goal", strfmt("Target",11), strfmt("Value",7))
forall(g in 1..i)

writeln(strfmt(g,4), strfmt(ATypes(gettype(Goal(g))),4),
strfmt(-getcoeff(Goal(g)),6),
strfmt( getact(Goal(g))-getsol(dev(2*g))+getsol(dev(2*g-1)) ,8))

forall(g in 1..NGOALS)
if (getsol(dev(2*g))>0) then

writeln(" Goal(",g,") deviation from target: -", getsol(dev(2*g)))
elif (getsol(dev(2*g-1))>0) then

writeln(" Goal(",g,") deviation from target: +", getsol(dev(2*g-1)))
end-if

end-procedure

end-model

When running the program, one finds that the first two goals can be satisfied, but not the
third.
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III. Working with the Mosel libraries



Whilst the two previous parts have shown how to work with the Mosel Language, this part
introduces the programming language interface of Mosel in the form of the Mosel C libraries.
The C interface is provided in the form of two libraries; it may especially be of interest to users
who

• want to integrate models and/or solution algorithms written with Mosel into some larger
system

• want to (re)use already existing parts of algorithms written in C

• want to interface Mosel with other software, for instance for graphically displaying re-
sults.

Other programming language interfaces available for Mosel are its Java and Visual Basic inter-
faces. They will be introduced with the help of small examples.

All these programming language interfaces only enable the user to access models, but not to
modify them. The latter is only possible with the Mosel Native Interface. Even more impor-
tantly, the Native Interface makes it possible to add new constants, types, and subroutines to
the Mosel Language. For more detail the reader is referred to the Native Interface user guide
that is provided as a separate document. The Mosel Native Interface requires an additional
licence.
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Chapter 13

C interface

This chapter gives an introduction to the C interface of Mosel. It shows how to execute models
from C and how to access modeling objects from C. It is not possible to make changes to Mosel
modeling objects from C using this interface, but the data and parameters used by a model
may be modified via files or run time parameters.

13.1 Basic tasks

To work with a Mosel model, in the C language or with the command line interpreter, it always
needs to be compiled, then loaded into Mosel and executed. In this section we show how to
perform these basic tasks in C.

13.1.1 Compiling a model in C

The following example program shows how Mosel is initialized in C, and how a model file
(extension .mos ) is compiled into a binary model (BIM) file (extension .bim ). To use the Mosel
Model Compiler Library, we need to include the header file xprm_mc.h at the start of the C
program.

For the sake of readability, in this program, as for all others in this chapter, we only implement
a rudimentary testing for errors.

#include <stdlib.h>
#include "xprm_mc.h"

int main()
{

if(XPRMinit()) /* Initialize Mosel */
return 1;

if(XPRMcompmod(NULL, "burglar2.mos", NULL, "Knapsack example"))
return 2; /* Compile the model burglar2.mos,

output the file burglar2.bim */
return 0;

}

With version 1.4 of Mosel it becomes possible to redirect the BIM file that is generated by the
compilation. Instead of writing it out to a physical file it may, for instance, be kept in memory
or be written out in compressed format. The interested reader is refered to the whitepaper
Generalized file handling in Mosel.

13.1.2 Executing a model in C

The example in this section shows how a Mosel binary model file (BIM) can be executed in
C. The BIM file can of course be generated within the same program where it is executed,
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but here we leave out this step. A BIM file is an executable version of a model, but it does not
include any data that is read in by the model from external files. It is portable, that is, it may be
executed on a different type of architecture than the one it has been generated on. A BIM file
produced by the Mosel compiler first needs to be loaded into Mosel (function XPRMloadmod)
and can then be run by a call to function XPRMrunmod. To use these functions, we need to
include the header file xprm_rt.h at the beginning of our program.

#include <stdio.h>
#include "xprm_rt.h"

int main()
{

XPRMmodel mod;
int result;

if(XPRMinit()) /* Initialize Mosel */
return 1;

if((mod=XPRMloadmod("burglar2.bim",NULL))==NULL) /* Load a BIM file */
return 2;

if(XPRMrunmod(mod,&result,NULL)) /* Run the model */
return 3;

return 0;
}

The compile/load/run sequence may also be performed with a single function call to XPRMex-
ecmod (in this case we need to include the header file xprm_mc.h ):

#include <stdio.h>
#include "xprm_mc.h"

int main()
{

int result;

if(XPRMinit()) /* Initialize Mosel */
return 1;

/* Execute = compile/load/run a model */
if(XPRMexecmod(NULL,"burglar2.mos",NULL,&result,NULL))

return 2;

return 0;
}

13.2 Parameters

In Part I the concept of parameters in Mosel has been introduced: when a Mosel model is
executed from the command line, it is possible to pass new values for its parameters into the
model. The same is possible with a model run in C. If, for instance, we want to run model
‘Prime’ from Section 8.2 to obtain all prime numbers up to 500 (instead of the default value
100 set for the parameter LIMIT in the model), we may start a program with the following
lines:

XPRMmodel mod;
int result;

if(XPRMinit()) /* Initialize Mosel */
return 1;
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if((mod=XPRMloadmod("prime.bim",NULL))==NULL) /* Load a BIM file */
return 2;

if(XPRMrunmod(mod,&result,"LIMIT=500")) /* Run the model */
return 3;

To use function XPRMexecmodinstead of the compile/load/run sequence we have:

int result;

if(XPRMinit()) /* Initialize Mosel */
return 1;

/* Execute with new parameter settings */
if(XPRMexecmod(NULL,"prime.mos","LIMIT=500",&result,NULL))

return 2;

13.3 Accessing modeling objects and solution values

Using the Mosel libraries, it is not only possible to compile and run models, but also to access
information on the different modeling objects.

13.3.1 Accessing sets

A complete version of a program for running the model ‘Prime’ mentioned in the previous
section may look as follows (we work with a model prime2 that corresponds to the one printed
in Section 8.2 but with all output printing removed because we are doing this in C):

#include <stdio.h>
#include "xprm_mc.h"

int main()
{

XPRMmodel mod;
XPRMalltypes rvalue, setitem;
XPRMset set;
int result, type, i, size, first, last;

if(XPRMinit()) /* Initialize Mosel */
return 1;

if(XPRMexecmod(NULL,"prime2.mos","LIMIT=500",&result,&mod))
return 2; /* Execute the model */

type=XPRMfindident(mod,"SPrime",&rvalue); /* Get the object ’SPrime’ */
if((XPRM_TYP(type)!=XPRM_TYP_INT)|| /* Check the type: */

(XPRM_STR(type)!=XPRM_STR_SET)) /* it must be a set of integers */
return 3;

set = rvalue.set;

size = XPRMgetsetsize(set); /* Get the size of the set */
if(size>0)
{

first = XPRMgetfirstsetndx(set); /* Get number of the first index */
last = XPRMgetlastsetndx(set); /* Get number of the last index */
printf("Prime numbers from 2 to %d:\n", LIM);
for(i=first;i<=last;i++) /* Print all set elements */

printf(" %d,",XPRMgetelsetval(set,i,&setitem)->integer);
printf("\n");

}
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return 0;
}

To print the contents of set SPrime that contains the desired result (prime numbers between 2
and 500), we first retrieve the Mosel reference to this object using function XPRMfindident .
We are then able to enumerate the elements of the set (using functions XPRMgetfirstsetndx
and XPRMgetlastsetndx ) and obtain their respective values with XPRMgetelsetval .

13.3.2 Retrieving solution values

The following program executes the model ‘Burglar3’ (the same as model ‘Burglar2’ from
Chapter 2 but with all output printing removed) and prints out its solution.

#include <stdio.h>
#include "xprm_rt.h"

int main()
{

XPRMmodel mod;
XPRMalltypes rvalue, itemname;
XPRMarray varr, darr;
XPRMmpvar x;
XPRMset set;
int indices[1], result, type;
double val;

if(XPRMinit()) /* Initialize Mosel */
return 1;

if((mod=XPRMloadmod("burglar3.bim",NULL))==NULL) /* Load a BIM file */
return 2;

if(XPRMrunmod(mod,&result,NULL)) /* Run the model (includes
optimization) */

return 3;

if((XPRMgetprobstat(mod)&XPRM_PBRES)!=XPRM_PBOPT)
return 4; /* Test whether a solution is found */

printf("Objective value: %g\n", XPRMgetobjval(mod));
/* Print the obj. function value */

type=XPRMfindident(mod,"take",&rvalue); /* Get the model object ’take’ */
if((XPRM_TYP(type)!=XPRM_TYP_MPVAR)|| /* Check the type: */

(XPRM_STR(type)!=XPRM_STR_ARR)) /* it must be an ‘mpvar’ array */
return 5;

varr = rvalue.array;

type=XPRMfindident(mod,"VALUE",&rvalue); /* Get the model object ’VALUE’ */
if((XPRM_TYP(type)!=XPRM_TYP_REAL)|| /* Check the type: */

(XPRM_STR(type)!=XPRM_STR_ARR)) /* it must be an array of reals */
return 6;

darr = rvalue.array;

type=XPRMfindident(mod,"ITEMS",&rvalue); /* Get the model object ’ITEMS’ */
if((XPRM_TYP(type)!=XPRM_TYP_STRING)|| /* Check the type: */

(XPRM_STR(type)!=XPRM_STR_SET)) /* it must be a set of strings */
return 7;

set = rvalue.set;

XPRMgetfirstarrentry(varr, indices); /* Get the first entry of array varr
(we know that the array is dense
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and has a single dimension) */
do
{

XPRMgetarrval(varr,indices,&x); /* Get a variable from varr */
XPRMgetarrval(darr,indices,&val); /* Get the corresponding value */
printf("take(%s): %g\t (item value: %g)\n", XPRMgetelsetval(set, indices[0],

&itemname)->string, XPRMgetvsol(mod,x), val);
/* Print the solution value */

} while(!XPRMgetnextarrentry(varr, indices)); /* Get the next index tuple */

return 0;
}

The array of variables varr is enumerated using the array functions XPRMgetfirstarren-
try and XPRMgetnextarrentry . These functions may be applied to arrays of any type and
dimension (for higher numbers of dimensions, merely the size of the array indices that is
used to store the index-tuples has to be adapted). With these functions we run systematically
through all possible combinations of index tuples, hence the hint at dense arrays in the exam-
ple. In the case of sparse arrays it is preferrable to use different enumeration functions that
only enumerates those entries that are defined (see next section).

13.3.3 Sparse arrays

In Chapter 3 the problem ‘Transport’ has been introduced. The objective of this problem is to
calculate the flows flowpr from a set of plants to a set of sales regions that satisfy all demand
and supply constraints and minimize the total cost. Not all plants may deliver goods to all
regions. The flow variables flowpr are therefore defined as a sparse array. The following
example prints out all existing entries of the array of variables.

#include <stdio.h>
#include "xprm_rt.h"

int main()
{

XPRMmodel mod;
XPRMalltypes rvalue;
XPRMarray varr;
XPRMset *sets;
int *indices, dim, result, type, i;

if(XPRMinit()) /* Initialize Mosel */
return 1;

if((mod=XPRMloadmod("transport.bim",NULL))==NULL) /* Load a BIM file */
return 2;

if(XPRMrunmod(mod,&result,NULL)) /* Run the model */
return 3;

type=XPRMfindident(mod,"flow",&rvalue); /* Get the model object named ’flow’ */
if((XPRM_TYP(type)!=XPRM_TYP_MPVAR)|| /* Check the type: */

(XPRM_STR(type)!=XPRM_STR_ARR)) /* it must be an array of unknowns */
return 4;

varr=rvalue.array;

dim = XPRMgetarrdim(varr); /* Get the number of dimensions of
the array */

indices = (int *)malloc(dim*sizeof(int));
sets = (XPRMset *)malloc(dim*sizeof(XPRMset));

XPRMgetarrsets(varr,sets); /* Get the indexing sets */
XPRMgetfirstarrtruentry(varr,indices); /* Get the first true index tuple */
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do
{

printf("flow(");
for(i=0;i<dim-1;i++)

printf("%s,",XPRMgetelsetval(sets[i],indices[i],&rvalue)->string);
printf("%s), ",XPRMgetelsetval(sets[dim-1],indices[dim-1],&rvalue)->string);

} while(!XPRMgetnextarrtruentry(varr,indices)); /* Get next true index tuple*/
printf("\n");

free(sets);
free(indices);

return 0;
}

In this example, we first get the number of indices (dimensions) of the array of variables varr
(using function XPRMgetarrdim ). We use this information to allocate space for the arrays
sets and indices that will be used to store the indexing sets and single index tuples for this
array respectively. We then read the indexing sets of the array (function XPRMgetarrsets ) to
be able to produce a nice printout.

The enumeration starts with the first defined index tuple, obtained with function XPRMget-
firstarrtruentry , and continues with a series of calls to XPRMgetnextarrtruentry until
all defined entries have been enumerated.

13.3.4 Problem solving in C with Xpress-Optimizer

In certain cases, for instance if the user wants to re-use parts of algorithms that he has written
in C for the Xpress-Optimizer, it may be necessary to pass from a problem formulation with
Mosel to solving the problem in C by direct calls to the Xpress-Optimizer. The following exam-
ple shows how this may be done for the Burglar problem. We use a slightly modified version
of the original Mosel model:

model Burglar4
uses "mmxprs"

declarations
WTMAX=102 ! Maximum weight allowed
ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"} ! Index set for items

VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Item: ca ne va pi tv vi ch br
VALUE := [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT:= [ 2, 20, 20, 30, 40, 30, 60, 10]

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

setparam("XPRS_LOADNAMES", true) ! Enable loading of object names
loadprob(MaxVal) ! Load problem into the optimizer

end-model
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The procedure maximize to solve the problem has been replaced by loadprob . This procedure
loads the problem into the optimizer without solving it. We also enable the loading of names
from Mosel into the optimizer so that we may obtain an easily readable output.

The following C program reads in the Mosel model and solves the problem by direct calls
to Xpress-Optimizer. To be able to address the problem loaded into the optimizer, we need
to retrieve the optimizer problem pointer from Mosel. Since this information is a parameter
(XPRS_PROBLEM) that is provided by module mmxprs, we first need to obtain the reference of
this library (by using function XPRMfinddso ).

#include <stdio.h>
#include "xprm_rt.h"
#include "xprs.h"

int main()
{

XPRMmodel mod;
XPRMdsolib dso;
XPRSprob prob;
int result, ncol, len, i;
double *sol, val;
char *names;

if(XPRMinit()) /* Initialize Mosel */
return 1;

if((mod=XPRMloadmod("burglar4.bim",NULL))==NULL) /* Load a BIM file */
return 2;

if(XPRMrunmod(mod,&result,NULL)) /* Run the model (no optimization) */
return 3;

/* Retrieve the pointer to the problem loaded in the Xpress-Optimizer */
if((dso=XPRMfinddso("mmxprs"))==NULL)

return 4;
if(XPRMgetdsoparam(mod, dso, "XPRS_PROBLEM", &result, (XPRMalltypes *)&prob))

return 5;

if(XPRSmaxim(prob, "g")) /* Solve the problem */
return 6;

if(XPRSgetintattrib(prob, XPRS_MIPSTATUS, &result))
return 7;

/* Test whether a solution is found */
if((result==4) || (result==6))
{

if(XPRSgetdblattrib(prob, XPRS_MIPOBJVAL, &val))
return 8;

printf("Objective value: %g\n", val); /* Print the objective function value */

if(XPRSgetintattrib(prob, XPRS_COLS, &ncol))
return 9;

if((sol = (double *)malloc(ncol * sizeof(double)))==NULL)
return 10;

if(XPRSgetsol(prob, sol, NULL, NULL, NULL))
return 11; /* Get the primal solution values */

if(XPRSgetintattrib(prob, XPRS_NAMELENGTH, &len))
return 11; /* Get the maximum name length */

if((names = (char *)malloc((len*8+1)*ncol*sizeof(char)))==NULL)
return 12;

if(XPRSgetnames(prob, 2, names, 0, ncol-1))
return 13; /* Get the variable names */

for(i=0; i<ncol; i++) /* Print out the solution */
printf("%s: %g\n", names+((len*8+1)*i), sol[i]);
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free(names);
free(sol);

}
return 0;

}

Since the Mosel language provides ample programming facilities, in most applications there
will be no need to switch from the Mosel language to problem solving in C. If nevertheless
this type of implementation is chosen, it should be noted that it is not possible to get back
to Mosel, once the Xpress-Optimizer has been called directly from C: the solution information
and any possible changes made to the problem directly in the optimizer are not communicated
to Mosel.
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Chapter 14

Other programming language interfaces

In this chapter we show how the examples from Sections 13.1 and 13.2 may be written with
other programming languages, namely Java and Visual Basic.

14.1 Java

To use the Mosel Java classes the line import com.dashoptimization.*; must be added at
the beginning of the program.

14.1.1 Compiling and executing a model in Java

With Java it is not required to initialize Mosel explicitly. To execute a Mosel model in Java
we merely need to call the three Mosel functions performing the standard compile/load/run
sequence as shown in the following example.

import java.io.*;
import com.dashoptimization.*;

public class ugcomp
{

public static void main(String[] args) throws java.io.IOException
{

XPRMmodel mod;

System.out.println("Compiling ‘burglar2’");
XPRM.compile("burglar2.mos");

System.out.println("Loading ‘burglar2’");
mod = XPRM.loadModel("burglar2.bim");

System.out.println("Executing ‘burglar2’");
mod.run();

System.out.println("‘burglar2’ returned: " + mod.getResult());
}

}

14.1.2 Parameters

When executing a Mosel model in Java, it is possible to pass new values for its parameters
into the model. If, for instance, we want to run model ‘Prime’ from Section 8.2 to obtain all
prime numbers up to 500 (instead of the default value 100 set for the parameter LIMIT in the
model), we may write the following program:
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import java.io.*;
import com.dashoptimization.*;

public class ugparam
{

public static void main(String[] args) throws java.io.IOException
{

XPRMmodel mod;

System.out.println("Compiling ‘prime’");
XPRM.compile("prime.mos");

System.out.println("Loading ‘prime’");
mod = XPRM.loadModel("prime.bim");

System.out.println("Executing ‘prime’");
mod.run("LIMIT=500");

System.out.println("‘prime’ returned: " + mod.getResult());
}

}

14.2 Visual Basic

In Visual Basic, a Mosel model needs to be embedded into a project. In this section we shall
only show the parts relevant to the Mosel functions, assuming that the execution of a model is
trigged by the action of clicking on some object.

14.2.1 Compiling and executing a model in Visual Basic

As with the other programming languages, to execute a Mosel model in Visual Basic we need to
perform the standard compile/load/run sequence as shown in the following example. We use
a slightly modified version burglar5.mos of the burglar problem where we have redirected
the output printing to the file burglar_out.txt .

Private Sub burglar_Click()
Dim model As Long
Dim ret As Long
Dim result As Long

’Initialize Mosel
ret = XPRMinit
If ret <> 0 Then

MsgBox "Initialization error (" & ret & ")"
Exit Sub

End If

’Compile burglar5.mos
ret = XPRMcompmod(vbNullString, "burglar5.mos", vbNullString, "Knapsack")
If ret <> 0 Then

MsgBox "Compile error (" & ret & ")"
Exit Sub

End If

’Load burglar5.bim
model = XPRMloadmod("burglar5.bim", vbNullString)
If model = 0 Then

MsgBox "Error loading model"
Exit Sub

End If
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’Run the model
ret = XPRMrunmod(model, result, vbNullString)
If ret <> 0 Then

MsgBox "Execution error (" & ret & ")"
Exit Sub

End If
End Sub

14.2.2 Parameters

When executing a Mosel model in Visual Basic, it is possible to pass new values for its param-
eters into the model. The following program extract shows how we may run model ‘Prime’
from Section 8.2 to obtain all prime numbers up to 500 (instead of the default value 100 set
for the parameter LIMIT in the model). We use a slightly modified version prime3.mos of the
model where we have redirected the output printing to the file prime_out.txt .

Private Sub prime_Click()
Dim model As Long
Dim ret As Long
Dim result As Long

’Initialize Mosel
ret = XPRMinit
If ret <> 0 Then

MsgBox "Initialization error (" & ret & ")"
Exit Sub

End If

’Compile prime3.mos
ret = XPRMcompmod(vbNullString, "prime3.mos", vbNullString, "Prime numbers")
If ret <> 0 Then

MsgBox "Compile error (" & ret & ")"
Exit Sub

End If

’Load prime3.bim
model = XPRMloadmod("prime3.bim", vbNullString)
If model = 0 Then

MsgBox "Error loading model"
Exit Sub

End If

’Run model with new parameter settings
ret = XPRMrunmod(model, result, "LIMIT=500")
If ret <> 0 Then

MsgBox "Execution error (" & ret & ")"
Exit Sub

End If
End Sub
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