
Xpress-MP
Essentials

© Copyright Dash Associates 1984 – 2002
Second Edition, February 2002.

All trademarks referenced in this manual that are not the property of Dash Associates
are acknowledged.

All companies, products, names and data contained within this user guide are completely
fictitious and are used solely to illustrate the use of Xpress-MP. Any similarity between
these names or data and reality is purely coincidental.

How to Contact Dash

If you have any questions or comments on the use of Xpress-MP, please contact Dash
technical support at:

If you have any sales questions or wish to order Xpress-MP software, please contact your
local sales office, or Dash sales at:

For the latest news and Xpress-MP software and documentation updates, please visit the
Xpress-MP website at http://www.dashoptimization.com/

USA, Canada and The Americas Elsewhere
Dash Optimization Inc. Dash Optimization Ltd.
560 Sylvan Avenue Quinton Lodge, Binswood Avenue
Englewood Cliffs Leamington Spa
NJ 07632 Warwickshire CV32 5RX
USA UK
Telephone: (201) 567 9445 Telephone: +44 1926 315862
Fax: (201) 567 9443 Fax: +44 1926 315854
email: support-usa@dashoptimization.com email: support@dashoptimization.com

USA, Canada and The Americas Elsewhere
Dash Optimization Inc. Dash Optimization Ltd.
560 Sylvan Avenue Blisworth House, Church Lane
Englewood Cliffs Blisworth
NJ 07632 Northants NN7 3BX
USA UK
Telephone: (201) 567 9445 Telephone: +44 1604 858993
Fax: (201) 567 9443 Fax: +44 1604 858147
email: sales@dashoptimization.com email: sales@dashoptimization.com

Contents

1 Getting Started 1
Introduction .1
Xpress-MP Components and Interfaces. .2

Xpress-Mosel .2
The Xpress-Optimizer .3
Xpress-IVE .4
Console Xpress .4
The Xpress-MP Libraries .4
Which Interface Should You Use? .5

How to Read this Book. .6
Structure of the Book. .6
Conventions Used .6

2 Xpress-IVE 9
Getting Started .9

Starting Xpress-IVE .10
Entering a Simple Model .10

Working With Projects .10
The Model Editor .12
Compile…Load…Run! .13
Obtaining Further Information from Xpress-IVE .15

Going Further with Xpress-IVE .16
Setting Control Options .16
Running Multiple Models .17
Writing Matrix Files .19
Loading Problems from Matrix Files .20
Graphing Functions .21
Changing Your Environment .22

Getting Help .23
Xpress-MP Essentials Contentsi

3 Console Xpress 25
Getting Started .25

The Components of Console Xpress .26
Testing Xpress-Mosel .26
Testing the Xpress-Optimizer .27

Solving a Simple Problem with Xpress-Mosel .28
The Mosel File .28
The Three Pillars of Mosel .29
Obtaining Further Information From Mosel. .31

Going Further With Mosel .32
Running in Batch Mode .32
Running Multiple Models .33
Writing Matrix Files .35

Working with the Xpress-Optimizer .36
Solving a Problem. .36
Viewing the Solution .37
Output from WRITEPRTSOL 39

Going Further with the Optimizer .40
Optimization Algorithms .40
Integer Programming. .41
Optimizer Controls .43

Getting Help .45

4 The Xpress-MP Libraries 47
Getting started .47

The Components of the Xpress-MP Libraries .48
Working with the Mosel Libraries .49

Entering a Simple Model .49
Components of the Mosel Libraries .50
The Three Pillars of Mosel .50
Obtaining Solution Information .52

Going Further with the Mosel Libraries .54
Working with Several Models .54
Run Time Management .58
Writing Matrix Files .59

Working with Xpress-BCL. .61
A First Formulation for the Model .62
Solving the Problem with BCL .64
Formulating the Problem Using Array Variables .67

Going Further with BCL .70
Integer Programming. .70
Xpress-MP EssentialsContents ii

Writing Matrix Files .71
Working with the Xpress-Optimizer Library. .74

Solving an LP Problem with the Optimizer Library .74
Obtaining the Solution Using XPRSwriteprtsol 76

Going Further with the Optimizer Library .78
Changing the Optimization Algorithm. .78
Integer Programming. .79
Presolve and Everything After .80
Controls and Problem Attributes. .81
Interacting with the Optimization Process .84

Loading Models from Memory .86
Loading LP Problems with the Optimizer Library. .86
Obtaining a Solution to the Problem .90
Altering the Problem Matrix .92
Loading MIP Problems with the Optimizer Library .93

Getting the Best out of the Xpress-MP Libraries .95
Error Checking .95
Combining BCL with the Optimizer Library .95

Using Visual Basic with the Xpress-MP Libraries. .99
Included Files .100
Principal Structures. .100
Using Callbacks in Visual Basic. .104

Using Java with the Xpress-MP Libraries. .106
The Java Builder Component Library (BCL). .106
The Java Optimizer Library .108
Principal Structures. .110
Using Callbacks in Java. .113

Getting Help .115

5 Modeling with Xpress-MP 117
Introduction .117
Constructing our First Model .118

The Burglar Problem .118
Problem Specification. .119
Entering the Model into Xpress-Mosel .120
The Optimizer Library Module .122

Modeling Using Arrays. .124
Array Variables and Indexing .124
Looping and Summation .125
Comments .126
Using String Indices .127
Xpress-MP Essentials Contentsiii

Versatility in Modeling. .129
Generic and Instantiated Models .129
Scalar Declarations .129
Inputting Data From Text Files .130
Completing the Burglar Problem .131
Using Parameters with Mosel .135
The Hiker Problem .135
Solving the Hiker Problem .136

Getting Help .137

6 Further Mosel Topics 139
Introduction .139
Working With Sets .140

Dynamic, Fixed and Finalized Sets. .141
Set Operations .142

Working with Arrays .144
Multi-Dimensional Arrays .144
Fixed and Dynamic Arrays .146
Sparsity .146

Importing and Exporting Data .148
Model Data Entry .148
Data Transfer Using the initializations Block .149
Data Transfer Using ODBC .152
Data Transfer Using readln and writeln Commands.156

Conditional Variables and Constraints .159
Conditional Bounds .159
Conditional Variables .160

Basic Programming Structures .161
if Statements .161
case Statements. .164
forall Loops .165
while Loops .166
repeat Loops .167

Procedures and Functions .169
Procedures. .169
Functions .171
Recursion. .173
Forward Declaration. .174

7 Glossary of Terms 177

Index 183
Xpress-MP EssentialsContents iv

G
e

tt
in

g

S
ta

rt
e

d
1

1Getting StartedChapter 1
Getting Started

Overview
In this chapter you will:
• meet Xpress-Mosel and the Xpress-Optimizer;
• be introduced to the interfaces through which to use them;
• discover how this book is organized and what you should read.

Introduction

Xpress-MP is a mathematical modeling and optimization software
suite, providing tools for the formulation, solution and analysis of
linear, quadratic and integer programming problems. Based on the
powerful components, Xpress-Mosel and the Xpress-Optimizer, the
suite comprises a collection of interfaces, addressing the diversity of
users’ needs, both in problem solving and embedding Xpress-MP
technology within their own custom products.

This book provides an introduction to using the major components of
Xpress-MP and, as such, is ideal for getting new users up and running
immediately. The pace is relatively gentle and very little knowledge
of Mathematical Programming is assumed. For more experienced
users, the pages that follow may also provide new or alternative ideas
Xpress-MP Essentials Introduction1

G
ettin

g

Sta
rte

d
1

for using the product suite effectively. Many of the reference manuals
that accompany the Xpress-MP software suite assume some
knowledge of the material contained in Xpress-MP Essentials and it is
recommended that all users familiarize themselves with this guide
before continuing.

We begin by briefly describing the components and interfaces of
Xpress-MP and explain how they inter-relate. You may have already
decided which of the components you will need to use and can go
immediately to the relevant chapters of this book. For those who are
still trying to determine which are right for them, we provide an
overview of the different components to help you decide.

It should be noted that this book does not contain any details of the
installation and setting up of Xpress-MP products. Such information
can be found in the accompanying ‘readme’ documents (readme.win,
readme.unx) which can be found on the CD-ROM. We strongly
recommend that all users consult the document relevant to their
operating system before attempting to install and use any of the
software contained on the CD-ROM.

Xpress-MP Components and Interfaces

Xpress-Mosel

The two basic components of Xpress-MP are Xpress-Mosel and the
Xpress-Optimizer. Mosel is an environment for modeling and solving
problems, taking as input a model program describing a linear
programming (LP) or mixed integer programming (MIP) problem,
written in the Mosel model programming language. While small, this
language is extensible through the inclusion of library modules which
augment its functionality in different ways. The basic premise of
Mosel is that there is no separation between a modeling statement
and a procedure that actually solves the problem. To this end, the
Optimizer is included as a library module, allowing complicated

There is also a third,
Xpress-BCL, which is
available only to
library users. See
Chapter 4 for
details.
Xpress-MP EssentialsXpress-MP Components and Interfaces 2

G
e

tt
in

g

S
ta

rt
e

d
1

models to be constructed and solved from within Mosel itself,
returning the solution in a user-defined manner.

Using the ODBC library module, Mosel may be used to retrieve data
from, and export solution information back to, a wide range of
spreadsheets and databases. ODBC is the industry standard for
communication with most major databases, and the Mosel mmodbc
library module supports ODBC connections to any ODBC-enabled
product including Excel, Oracle and Access.

Typically a user will use Mosel to extract data from a text file or
database to generate a problem instance, call the Optimizer library
module to find the optimal solution to the problem and finally send
the results back to another ODBC-enabled product for reporting and
presentation. Input data can, in fact, be gathered from a number of
different data sources and different aspects of the solution can be sent
to different files or applications as best suits the requirements.

The Xpress-Optimizer

At the core of the Xpress-MP suite, the Xpress-Optimizer represents
decades of research and development in solution methods for linear
programming (LP), quadratic programming (QP) and mixed integer
programming (MIP) problems. Under continuous development using
in-house expertise and through close relationships with research
groups worldwide, the Optimizer has proved itself time and again on
a wide spectrum of problems.

Although developed to recognize the best strategies for solving most
problems, access is also provided to a comprehensive set of controls,
allowing users to tune the Optimizer’s performance on their own
individual problems. This is particularly useful for large mixed integer
programming problems, which may be difficult to solve to even
approximate optimality.

For the very hardest MIP problems, Xpress-MP provides the parallel
MIP Optimizer, designed to work on both a heterogeneous network
of PCs and/or workstations, and on shared memory multiprocessor
computers, to exploit all the computing power at your disposal. The
parallel Optimizer is at the leading edge of large-scale optimization.
Xpress-MP Essentials Xpress-MP Components and Interfaces3

G
ettin

g

Sta
rte

d
1

Xpress-IVE

Xpress-IVE, the Xpress Interactive Visual Environment, is a complete
modeling and optimization development environment running under
Microsoft Windows. Presenting Mosel in an easy-to-use Graphical
User Interface (GUI), with built-in text editor, IVE can be used for the
development, management and execution of multiple model
programs.

Combining ease of use with the powerful modeling and optimization
features that Xpress-MP users have come to enjoy, IVE is ideal for
developing and debugging prototype models.

Console Xpress

Console Xpress comprises the main stand-alone executables, mosel
and optimizer. These are simple yet powerful text-based ‘console’
interfaces to the Mosel and Optimizer components, respectively. They
offer a wide range of features and algorithmic tuning options and are
available in essentially identical form on a wide range of platforms
including Windows, Linux and other forms of UNIX.

We have found that Console Xpress products satisfy the needs of many
commercial users. Having developed your model with Xpress-IVE, you
can rapidly build production systems by wrapping Console Xpress
components in batch files or shell scripts, and tune the optimization
algorithms to solve your largest data instances.

The Xpress-MP Libraries

For more specialized applications, we offer the Xpress-MP Libraries,
providing access to the Mosel and Optimizer components from within
your own C/C++, Java and Visual Basic applications. The main
advantages of the Xpress-MP Libraries are that your own applications
can interact tightly with the functionality provided by Xpress-MP and
that greater flexibility exists to develop customized applications to
suit your needs. Under Windows, the Xpress-MP Libraries are
available as DLLs, providing a standard programming interface for
integrating Xpress-MP components within your Windows
Xpress-MP EssentialsXpress-MP Components and Interfaces 4

G
e

tt
in

g

S
ta

rt
e

d
1

applications. For UNIX users, the Xpress-MP Libraries are available as
shared object libraries.

On one level the Xpress-MP Libraries may be used simply to build
stand-alone applications using the basic model building and
optimization functionality available in all Xpress-MP products. An
application to import the data, generate a problem instance, solve the
problem, and export the solution can be developed swiftly, without
needing to wade through a vast manual.

For users wishing to build custom applications and develop specialized
heuristics, the Xpress-MP Libraries offer a much higher level of
functionality. They enable you to load, manipulate and output
matrices, solve problems and retrieve the solution, handle multiple
problems, and adjust controls. In addition, a sophisticated collection
of callbacks from the optimization algorithms and the proven ‘Branch
and Cut’ management tools offer the user unrivaled possibilities to
develop advanced optimization applications.

Which Interface Should You Use?

For first-time users or for developing new models, Xpress-IVE provides
the simplest interface to the Xpress-MP software. Its integrated
development environment gets you modeling quickly, and provides
all the solution handling possibilities of the other interfaces.

To operate a production system using modeling and/or optimization,
Console Xpress can be used to build batch processing applications.
This is also a flexible product for tuning optimization to suit the
largest problem instances.

If you are developing software such as Windows applications for your
end-user, the Xpress-MP Libraries offer the best interface. They can
also be used to good effect if you are investigating a difficult class of
problems and wish to develop specialized heuristics to help obtain
good solutions.
Xpress-MP Essentials Xpress-MP Components and Interfaces5

G
ettin

g

Sta
rte

d
1

How to Read this Book

Structure of the Book

This book assumes as a prerequisite that the Xpress-MP software you
wish to use has already been installed and no details of installation are
given here. For information on the installation of software and the
setting up of library components under a number of the major
compiler environments, you should refer to the accompanying
‘readme’ files (readme.win, readme.unx and lib\readme.txt) on
the installation CD-ROM.

The following three chapters (2 – 4) are of particular interest to new
users, discussing the different Xpress-MP interfaces: Xpress-IVE,
Console Xpress and the Xpress-MP Libraries. For the majority of users
only one of these will be relevant, depending on the particular
interface that you have chosen to use. Each of the chapters will take
you through entering and solving a simple problem and introduce
many of the practical issues that will be important when optimizing
your own problems.

Following this are two chapters on Mosel and its model programming
language. The first of these, Chapter 5, “Modeling with Xpress-MP”,
introduces many of the major features of the modeling language,
incrementally developing a simple model and exploring the benefits
of versatile modeling. Chapter 6, ”Further Mosel Topics”, extends
some of these ideas, introducing a collection of related topics. The
treatment here is only cursory, however, and further details on these
topics may be found in the Xpress-Mosel Reference Manual.

The book ends with a glossary of common terms.

Conventions Used

To help you to get the most out of this book, a number of formatting
conventions have been employed. On the whole, standard
typographical styles have been used, representing programming
constructs or program output with a fixed width font, whilst
equations and equation variables appear in an italic type face. Where
Xpress-MP EssentialsHow to Read this Book 6

G
e

tt
in

g

S
ta

rt
e

d
1

it might get confused with program output, user input will be
indicated in bold type face and this will often also be used to
indicate differences between a number of similar programs. Some
additional graphical styles and icons have also been used and are as
follows:

Notes: These are general points which we want to make sure that you
are aware of. They are things that may not otherwise be noticeable
in the surrounding text.

Caution: Occasionally we will come across particular points that may
be hazardous to the health of your problem or solution if not
considered.

Ideas: Experience is a wonderful thing and we want to share it with
you. These ideas are often approaches that we have found to work
well in the past, or are particular points that have previously been of
value to our users.

Debugging: Particularly relevant to the earlier chapters of this book,
occasionally users experience difficulty with setting up the software,
and these sections draw attention to common errors, pointing to
sources of help.

Exercises: Throughout the text we have provided a number of short
exercises. These provide breaks from reading about the products to
help you try out the ideas in the surrounding section.

Signposting: At various points in the book, a number of alternative
routes through the text are possible and depending on your interest
and knowledge you may want to skip certain portions of material.
This icon indicates the end of a logical section or material and is
accompanied by suggestions for what you may read next.

Side Notes: Some use will also be made of margin notes to stop small
points from getting in the way, and margin quotes to draw attention
to important concepts in the text.

Points in the margin
Xpress-MP Essentials How to Read this Book7

G
ettin

g

Sta
rte

d
1

Summary

In this chapter we have learnt:

about the main components of the Xpress-MP software
suite, Mosel and the Optimizer;

about the three interfaces to the main components,
Xpress-IVE, Console Xpress and the Xpress-MP Libraries;

which interface is best suited to your needs.
Xpress-MP EssentialsHow to Read this Book 8

X
p

re
ss

-I
V

E
2

2Xpress-IVEChapter 2
Xpress-IVE

Overview
In this chapter you will:
• work with projects and model program files in the Xpress-IVE interface;
• input simple models and solve them;
• export and input problems as matrix files;
• learn how to customize the look of the Xpress-IVE environment.

Getting Started

Xpress-IVE is the graphical user interface to Xpress-Mosel and the
Xpress-Optimizer for users of Microsoft Windows, providing a simple
development environment in which to learn about and use Xpress-MP
optimization tools. If you are reading this chapter, we assume that
you have already installed IVE. Over the course of this chapter we will
learn how to input and solve a simple model, explaining the main
features of the interactive visual environment and discuss how
solution information and output may be produced in several formats.

The IVE interface brings together the two main components of the
Xpress-MP suite, Mosel and the Optimizer, in a single graphical
environment for easier use. Implementing the powerful Mosel model
Xpress-MP Essentials Getting Started9

2
X

p
re

ss-IV
E

programming language, complicated models can be developed and
solved with the minimum of trouble, making IVE the ideal starting
point for new users of Xpress-MP software.

Starting Xpress-IVE

During installation, a folder of icons is added to the Start Menu. Using
this, IVE can be started by clicking on the Start button, choosing
Programs, Xpress-MP and finally Xpress-IVE. Otherwise, IVE may be
started from Windows Explorer by clicking on the ive.exe icon in the
xpressmp\bin directory.

Exercise Start up IVE now and make sure that the installation was
successful.

All Xpress-MP products employ a security system as an integral part of
the software which must be set up during the installation process for
all features of the product to be enabled. If set up incorrectly, or if
used without a license, Xpress-MP will be started in ‘trial mode’ and a
warning will be displayed along the top of the window stating ‘Trial
Version — commercial use prohibited’. The software can still be used
in this mode, although some restrictions are placed on the size and
complexity of the problems that can be handled by it. If this occurs
and you have a current license for Xpress-MP software, refer to the
‘readme’ files for details of setting up the security system correctly.

Entering a Simple Model

Working With Projects

Using IVE, models are created and developed in the context of a
project. An IVE project can contain any number of files relating to a
single model and provides a convenient object with which to work.
The Project Files pane in the left-most window of your workspace

You may wish to
add a shortcut to
IVE to your desktop
for easier access.
Xpress-MP EssentialsEntering a Simple Model 10

X
p

re
ss

-I
V

E
2

displays the project currently under development and any files
associated with it. Our first task in entering a new model is to create
a project to contain it.

Exercise Create a project called ‘essentials’ to work with in this
chapter. What sorts of files might you need to include in a project?

The Project Files pane will be updated to display your new project. A
project can contain both input files added by you and output files
generated during a model run and its compilation. A model program
file and any number of files holding external data relevant to the
model may be added to a project, whilst output files may include
binary model and matrix files. For now, we will just add a model
program file to the project.

Exercise Create a new Mosel file named ‘simple.mos’ and choose to
associate it with the current project, ‘essentials’.

The Project Files pane should now indicate that the new file
‘simple.mos’ is part of your project and a blank file will be open in a
new window ready for the model to be entered.

Creating a new project

Choose Project and then New Project from the IVE menu
bar. Using the ‘Browse’ button, choose a parent directory
for the project, and enter a name for the project directory.
A new directory will be created to contain all the files for
the project unless this option is unchecked. Click ‘OK’ to
proceed.

Adding a model program file

Choose File, New and then Blank File from the IVE menu
bar. A dialog box will appear enabling you to specify the
filename, file type and to add the file to the current
project.

If the central editor
window is not
immediately visible,
drag the boundary
of the Output/Input
pane to reveal it.
Xpress-MP Essentials Entering a Simple Model11

2
X

p
re

ss-IV
E

The Model Editor

IVE comes equipped with its own editor for creating and altering
model files. Any ASCII file can be viewed, edited and saved from
within this, although its usefulness comes from recognizing a model’s
structure and distinguishing visually between its various components.
This feature alone can save much debugging time, allowing most
typographical errors to be identified and corrected immediately.

Exercise Type the model given in Listing 2.1 line by line into the
model editor.

The simple model of Listing 2.1 contains just two decision variables (a
and b) and two constraints (first and second). Our problem is to
maximize the objective function, profit.

For the moment, since we will be concentrating only on using IVE, we
will not discuss the meaning of the model or any of its constituent
parts, although in this case it may already be clear. In Chapter 5 we
will focus on the Mosel language.

Listing 2.1 A simple model

model simple
 uses "mmxprs"

 declarations
 a: mpvar
 b: mpvar
 end-declarations

 first:= 3*a + 2*b <= 400
 second:= a + 3*b <= 200
 profit:= a + 2*b

 maximize(profit)

 writeln("Profit is ", getobjval)
end-model
Xpress-MP EssentialsEntering a Simple Model 12

X
p

re
ss

-I
V

E
2

As the model is entered, certain keywords such as model, uses and
declarations are recognized and highlighted in blue. Keywords act
as delimiters for the various components of the model program, so it
is important to make sure that they are entered correctly. Keywords
may be chosen and conveniently entered directly into the model using
a dropdown menu, available in the editor by holding down the Ctrl
key and space bar simultaneously.

Exercise Delete the declarations block in your model and leave the
cursor at the point where this used to be. By pressing Ctrl-Space,
choose ‘declarations@@end-declarations’ from the list to re-enter it.
Ensuring that the model still looks like Listing 2.1, save it.

The IVE model editor comes equipped with its own text search facility,
particularly useful when editing long files. By typing a word or phrase
in the text box next to the binoculars icon and hitting the Return key,
the first instance of that word or phrase is highlighted. Hitting Return
again moves on to the next until no further instances can be found in
the file and the search wraps to the first occurrence again.

Exercise Using the IVE model editor’s text search facility, find all
instances of the word ‘profit’ in the file ‘simple.mos’.

Compile…Load…Run!

The file that you have just created is perhaps best described as a model
program. It contains not only model specification statements, but also
imperative statements which must be executed. IVE deals with such
files firstly by compiling them, then loading the compiled file and
finally running it. Every time a model program file is altered, you will
have to go through this process to solve the new model. We consider
each of these steps in turn.

Compiling a model program file

Choose Build and then Compile from the IVE menu bar.
The file currently active in the model editor is compiled.

"Keywords…"

"Text
searches…"
Xpress-MP Essentials Entering a Simple Model13

2
X

p
re

ss-IV
E

As a model program is compiled, information about the compilation
process is displayed in the Build pane at the bottom of the workspace.
This pane is automatically displayed when compilation starts. If any
syntax errors are found in the model, they are displayed here, with
details of the line and character position where the error was detected
and a description of the problem, if available. Warning messages are
also displayed in this manner, prefixed by a W rather than an E. If no
errors are detected, the Build pane displays ‘Compilation successful’
and a compiled binary model or BIM file is produced and added to the
project.

Exercise Compile the model program of Listing 2.1. If any errors are
detected, check the listing carefully and correct the problem. Check
that the binary model file is added to your project.

The compiled BIM file can now be loaded and run to find a solution to
the problem.

Exercise Load and run the file ‘simple.bim’ to solve the problem.
What is the maximum amount of profit that can be obtained in our
model?

When a model program is run, the Output/Input pane at the right
hand side of the workspace window is selected to display program
output. Any output generated by the model is sent to this window
and in our case it is here that the objective function value is displayed.

Loading and Running a BIM file

Select Build and then Run from the menu bar. The BIM file
for the current model is automatically loaded and then
executed.
Xpress-MP EssentialsEntering a Simple Model 14

X
p

re
ss

-I
V

E
2

Obtaining Further Information from Xpress-IVE

Knowing the maximum amount of profit that we can make in our
model is certainly useful, but what values should the decision variables
take in order to produce this? IVE makes all information about the
solution available through the Entities pane in the left hand window.
By expanding the list of decision variables in this pane and hovering
over one with the mouse pointer, its solution and reduced cost are
displayed. Dual and slack values for constraints may also be obtained.

Additionally, by clicking on a variable or constraint in the Entities
pane, all lines containing occurrences of it in the model are
highlighted with a marker and are described in a Locations pane at
the bottom of the workspace. The markers can subsequently be
removed using the ‘Clear bookmarks’ icon on the IVE toolbar.

Exercise Click on the tab to display the Entities pane. What values
must the decision variables (a and b) take to achieve the stated profit?
Clicking on the variable a, find all lines in the model containing this
variable before finally removing the markers.

IVE will also provide graphical representations of how the solution is
obtained, which are generated by default whenever a problem is
optimized. The right hand window contains a number of panes for
this purpose, dependent on the type of problem solved and the
particular algorithm used. For the problem that we have been
considering, the pane Sim:Obj(iter) represents the values of the
objective function at various iterations when the simplex algorithm is
employed.

Exercise Display the Sim:Obj(iter) pane and resize the window if
necessary to view the entire graph and information above it. Moving
the mouse pointer over the different areas of the graph, notice that
an iteration number and the value of the objective function at that
iteration are displayed above the graph.

In this case, only the initial point and final iteration are displayed on
the graph, providing no extra information. Presently, we will see how
intermediate iterations can be viewed when we learn how to change
the parameters which control this.

Solution details can
also be obtained by
simply hovering
over an entity in the
model file.

"Solution
graphs…"
Xpress-MP Essentials Entering a Simple Model15

2
X

p
re

ss-IV
E

Going Further with Xpress-IVE

Setting Control Options

The Mosel model programming language provides a number of
possibilities for influencing the solution process by setting control
parameters relied on by the Xpress-Optimizer. With such possibilities
catered for directly in the language, IVE does not provide duplicate
functionality except where the options directly affect the output
which IVE produces. Choosing Build, followed by Options, a full list of
the possibilities may be viewed.

Perhaps of most immediate interest is the LPLOG control which
influences how much detail about solution iterations is produced
during optimization. Specifically, the Optimizer outputs information
about the start point, the end point and every LPLOG iterations
between these. Typically set to 100, the default and Mosel settings for
this can be overridden for the simplex algorithm using the first option.
Notably, it is this option which affects how many iterations are plotted
on the graph produced in the Sim:Obj(iter) pane.

Exercise Checking the ‘Ignore Mosel settings’ box and setting LPLOG
to 1, click to ‘Apply’ the settings and re-optimize the problem ‘simple’.
From the graph, what is the value of the objective function at the first
iteration of the algorithm?

Whilst interesting to consider on small problems such as ours, on
larger problems, Optimizer performance can be significantly worse if
output must be produced at each iteration. In such cases, setting
LPLOG to a higher value is preferable. If you are not interested in the
solution graphs, it might also be preferable to disable the graphical
options altogether, so no resources are wasted during the
optimization. The options for achieving this are also available from
this same control options menu.
Xpress-MP EssentialsGoing Further with Xpress-IVE 16

X
p

re
ss

-I
V

E
2

Running Multiple Models

Whilst only one project may be loaded in IVE at a time, a project can
contain a number of model files, which can be held in memory and
worked on simultaneously. The model currently displayed in the
editor window is designated the active problem, but by selecting from
the open models, any of them can be compiled and run as necessary.
To demonstrate this, we will need another model, such as that given
in Listing 2.2.

Exercise Add a second model file ‘altered.mos’ to the project
‘essentials’ and type in the model of Listing 2.2.

As a model is edited in IVE it becomes the active problem. Whenever
the Compile or Run options are called from the Build menu, it is the
active problem which is affected.

Listing 2.2 The altered model

model altered
 uses "mmxprs"

 declarations
 a: mpvar
 b: mpvar
 end-declarations

 first:= 3*a + 2*b <= 400
 second:= a + 3*b <= 200
 third:= 6*a + 5*b <= 800
 profit:= a + 2*b

 maximize(profit)

 writeln("Profit is ", getobjval)
 writeln(" a = ", getsol(a), "; b = ", getsol(b))
end-model

The only changes in
the model between
this and Listing 2.1 is
the imposition of a
new constraint. You
can expect the
objective function
value to decrease if
this constraint is
binding.
Xpress-MP Essentials Going Further with Xpress-IVE17

2
X

p
re

ss-IV
E

Exercise Compile and run the new model, ‘altered’. What is the
maximum profit that may be obtained now? How does this compare
to the profit for project ‘simple’?

We have already seen that the Project Files pane in the left hand
window displays a list of all the files in the current project. A list of all
open files is also provided in the form of a collection of buttons just
above this window, labelled with the file’s name. By clicking on these
buttons, the associated file can be displayed in the editor window,
making it the active problem.

It should be noted, however, that while the active problem may be
changed in this way, information in the Entities pane is updated only
when a compiled model is run. For this reason, solution information
in the Entities pane need not necessarily refer to the active problem
and you should take care when working with several models.

Exercise Click on the button to redisplay the model ‘simple’ in the
editor window. Notice that all information provided in the Entities
pane still relates to the problem ‘altered’, however.

Other files in a project may also be opened by clicking on them in the
Project Files pane using the right mouse button and choosing Open/
Show file from the drop-down menu displayed. Open files may be
closed by choosing Close file from this same menu and files may be
deleted from a project using Remove from project.

Exercise Close the file ‘altered.mos’ in the editor window and remove
this and ‘altered.bim’ from the current project. Re-run ‘simple’ to
update the information in the Entities pane.
Xpress-MP EssentialsGoing Further with Xpress-IVE 18

X
p

re
ss

-I
V

E
2

Writing Matrix Files

Sometimes you may create a model for which you want more control
over the optimization process than is afforded by IVE, or you may
want to give the model to someone else to use. In both cases output
is required in a common format which is understood by the solver
program that will eventually be used. IVE allows you to create such
matrix files in the two main industry standard formats: LP files and
MPS files.

Exercise Create an MPS matrix file ‘simple.mat’ from the model
program ‘simple.mos’ and close the model file ‘simple.mos’.

Unlike the MPS format, LP files contain additional information about
whether the model describes a maximization or minimization
problem. When exporting files in this format, it is important to specify
the optimization sense correctly.

Exercise Using File, Open, view your new matrix file using the IVE
model editor. When prompted, choose to add this to your current
project.

Exporting problem matrices

Choose Build followed by Export matrix from the menu
bar and select between either an MPS matrix file or a
maximization or minimization LP as required. Set which
constraint represents the objective function before writing
the matrix file.

You must ensure
that the model has
been compiled and
run before this will
work.
Xpress-MP Essentials Going Further with Xpress-IVE19

2
X

p
re

ss-IV
E

Loading Problems from Matrix Files

Xpress-IVE can also be used to load and solve problems available as
matrix files, providing a direct interface to the Xpress-Optimizer from
within IVE. Although IVE is predominantly a graphical interface for
developing models using Mosel, it may sometimes be desirable to use
it in this way if, for instance, a user is interested in employing its
solution graphing capabilities.

Exercise Load the matrix file ‘simple.mat’ that you have just created
and, setting the integer control parameter LPLOG to 1, maximize the
LP problem.

Once a solution to the problem has been found, the Output/Input
pane will display problem statistics. Often overlooked, these are
useful in checking that the matrix loaded actually corresponds to the
problem which we wanted to solve. In this case we see that the
problem matrix has three rows (corresponding to two constraints and
the objective function) and two (structural) columns, another word
for the decision variables. The matrix has six nonzero elements
because both a and b appear with nonzero coefficients in all rows.
Since this is not a (mixed) integer problem, there are no global
entities, no sets and hence no set members in the problem.

Following this the value of the objective function at its initial, last and
every LPLOG iterations is displayed, along with the solution status.

Exercise Check that the problem statistics correspond to the problem
‘simple’. From this or from the Sim:Obj(iter) pane, note how the
optimal objective value was obtained.

Loading and Solving Matrix Problems

Using Build, followed by Optimize matrix file from the IVE
menu bar, browse for the matrix file to be used. If it is
already open in the editor window, the file will be
automatically selected. Setting the algorithm, sense and
problem type, click on ‘Start’ to begin solving. Optimizer
controls such as LPLOG can also be set from this dialog.

"Problem
statistics…"
Xpress-MP EssentialsGoing Further with Xpress-IVE 20

X
p

re
ss

-I
V

E
2

Graphing Functions

We have already seen above that IVE can graphically display the
objective function value during the optimization, at any iterations as
determined by the LPLOG control. However, IVE also allows for the
graphing of your own functions by embedding the commands
IVEinitgraph and IVEaddtograph in your Mosel program, with
output viewed from a User Graph pane in the right hand side window.
An example is provided in Listing 2.3.

Exercise Create a new file called ‘decay.mos’, entering the model of
Listing 2.3. Selecting the User Graph pane, run the model and view
the function.

IVEinitgraph

Initializes IVE’s user graphing facility. Its two arguments
are the names for the x and y-axes respectively.

IVEaddtograph

Plots a point on the user graph. Its two arguments are the
values for the point in Cartesian coordinates.

Listing 2.3 Graphing exponential decay

model decay
 uses "mmive";

 IVEinitgraph("Decaying oscillator","x","y")

 forall(i in 1..400) do
 IVEaddtograph(i,exp(-0.01*i)*cos(i*0.1))
 end-do
end-model
Xpress-MP Essentials Going Further with Xpress-IVE21

2
X

p
re

ss-IV
E

Changing Your Environment

Many aspects of the IVE environment are customizable and may easily
be altered if they do not suit the way in which you like to work.
Properties such as font faces, color and sizes as well as the placement
and visibility of windows within the workspace are all determined by
settings that can be changed for a particular project. Default settings
are applied whenever a new project is created and are read whenever
that project is opened.

Window placement within the IVE workspace is as simple as dragging
a window boundary to a new position. Visibility can be changed by
selecting/deselecting either of the Project Bar, Info Bar or Run Bar
from the View menu.

Exercise Experiment with each of the various options on the View
menu, turning each one off and then on to see the effect. Resize any
windows to make your environment easier to work with.

Other settings for a project may be accessed by clicking the right
mouse button in the Model Editor window and choosing Properties.
The dialog box displayed offers tabs to alter Color/Font, Language/
Tabs, Keyboard and other miscellaneous settings. Having made
changes, clicking on the ‘Apply’ or ‘OK’ buttons updates your window
and font information with any changes. This is then saved when the
project or application closes.

Exercise View the settings as they currently stand and change the
color used by the editor to display keywords. Click the ‘Apply’ button
for the changes to take effect.

The IVE model editor can also be used to edit other types of files by
setting the language appropriately on the Language/Tabs pane.
Options exist for smart-editing of C/C++, Basic, Java and many other
file types. For easier editing of long models, line numbering can also
be applied to files from the Misc pane, setting the style to decimal.
Xpress-MP EssentialsGoing Further with Xpress-IVE 22

X
p

re
ss

-I
V

E
2

Getting Help

Having reached this point, you have learnt how to create and manage
projects in Xpress-IVE, to enter, alter and save simple models using the
Model Editor, and to compile, load and run them to obtain a solution.
You have also learnt how to work with several models simultaneously,
to export and optimize problems as matrix files and to customize the
IVE workspace. Up to this point we have been concentrating solely on
how to use the environment provided by IVE. In Chapter 5, however,
the basics of the Mosel programming language are explained,
allowing you to model and solve your own problems. You may wish
to turn there next. The following two chapters contain information
on using Console Xpress and the Xpress-MP Libraries and may be
safely skipped if you intend to use only IVE. If you require additional
help on using either Mosel or the Optimizer, this may be obtained
from the Mosel and Optimizer Reference Manuals respectively.

Summary

In this chapter we have learnt how to:

create and manage projects in IVE;

create models using the built-in model editor;

compile, load and run model programs;

export problems as matrix files;

import and solve problems from matrix files;

customize the IVE environment for a project.
Xpress-MP Essentials Getting Help23

2
X

p
re

ss-IV
E

Xpress-MP EssentialsGetting Help 24

C
o

n
so

le

X
p

re
ss

3

3Console XpressChapter 3
Console Xpress

Overview
In this chapter you will:
• use Xpress-Mosel to compile, load and run a model program file;
• solve linear and integer programing problems and access the solution;
• use the Xpress-Optimizer on its own to solve problems;
• affect the optimization process, setting controls and choosing the algorithm used.

Getting Started

Console Xpress provides a powerful text-based interface to the Xpress-
MP software suite, allowing interactive development and batch-mode
processing of models by users of all platforms. If you are reading this
chapter, we shall assume that you have already installed Console
Xpress. Over the course of this chapter we will learn how to input and
solve simple models, explaining the major features of the Console
interface. Users of the Xpress-MP Libraries may also find this
information useful.
Xpress-MP Essentials Getting Started25

3
C

o
n

so
le

X
p

re
ss
The Components of Console Xpress

The Console Xpress interface essentially comprises two major
components: Xpress-Mosel and the Xpress-Optimizer. The first of
these, Mosel, provides a highly flexible environment in which model
specification programs written in the Mosel model programming
language may be compiled and run. Matrix output files can be
generated in a number of industry standard formats and subsequently
loaded into the Optimizer to solve and output a solution.
Alternatively, and more usually, the functionality of the Optimizer
may be plugged directly into Mosel as a library module, enabling users
to solve problems from within Mosel itself. Both of these components
can also be usefully employed in batch mode for automated problem
solving.

Running one of these components is as simple as typing either mosel
or optimizer at the command prompt. Our first task before going
any further will be to check successful installation of the components
by testing them.

Testing Xpress-Mosel

Successful installation of Mosel may be checked by issuing the
command mosel at the shell command prompt and pressing the
Return key. The program responds with a short banner, following
which the Mosel prompt, >, is displayed and Mosel waits for user
input.

Exercise Start Mosel as described above. At the Mosel prompt, type
quit and you should be returned to the shell command prompt.

Listing 3.1 demonstrates the procedure which you have just gone
through, with input from the user highlighted in bold face.

If the header information described does not appear when you follow
through the steps outlined here, it may be that the mosel and
optimizer binaries are not in your current path. Check this by
changing to the directory containing the binaries and attempt to run
them from there. If this is successful, update your path accordingly.
Xpress-MP EssentialsGetting Started 26

C
o

n
so

le

X
p

re
ss

3

All Xpress-MP products employ a security system as an integral part of
the software. This must be set up during the installation process for all
features of the product to be enabled. If the security system is not set
up correctly, Xpress-MP components will be initialized in ‘trial mode’,
allowing use but placing restrictions on the size and complexity of
problems that can be handled. If this occurs and you have been
licensed to use Console Xpress, refer to the ‘readme’ files for details of
setting up the security system correctly.

Testing the Xpress-Optimizer

Successful operation of the Optimizer may be checked in a similar
manner to Mosel by running optimizer from the command prompt.
The program again responds with a header supplying the version of
the Optimizer installed, followed by a prompt for a problem name. If
the problem name is left blank and the Return key is pressed, the
Optimizer will assume a default problem name of ‘$$$$$$$$’ for the
purposes of any files that it may need to create. Finally the
Optimizer’s command prompt, >, is displayed and the program waits
for user input.

Exercise Run the Optimizer to check that installation was successful
and when prompted for a problem name, just hit Return. At the
Optimizer prompt, type QUIT to exit the program.

Listing 3.2 displays an equivalent session to Listing 3.1 for the
Optimizer, again with user input highlighted in bold type.

Listing 3.1 Testing Console Xpress-Mosel

C:\> mosel
** Xpress-Mosel **
(c) Copyright Dash Associates 1998-zzzz
> quit
Exiting.

C:\>

The problem name
forms the basis for
any files that are
generated by the
Optimizer or Mosel.
Xpress-MP Essentials Getting Started27

3
C

o
n

so
le

X
p

re
ss
Solving a Simple Problem with Xpress-Mosel

The Mosel File

Assuming that both Mosel and the Optimizer are running correctly,
we can now use Console Xpress to input a model and to solve it.
Throughout this chapter we shall largely be working with the simple
model given in Listing 3.3, which has just two decision variables (a and
b) and two constraints (first and second). The aim is to maximize
the objective function, profit.

For the moment, since we will be concentrating only on using Mosel
and the Optimizer, we will not discuss the meaning of the model or
any of its constituent parts, although in this case it may already be
clear. In Chapter 5 we will focus on the Mosel model programming
language.

Problems such as this are presented to Mosel by way of model input
files of the form described in Listing 3.3. These are ASCII text files
describing the model syntax as well as any processing information
which Mosel is expected to carry out. By default, Mosel files are
assumed to have a .mos extension and this is the convention that we
will adopt in this chapter.

Listing 3.2 Testing the Console Xpress-Optimizer

C:\> optimizer
XPRESS-MP Integer Barrier Optimizer Release xx.yy
(c) Copyright Dash Associates 1984-zzzz
Enter problem name >
Default problem name of $$$$$$$$ assumed
> QUIT

C:\>
Xpress-MP EssentialsSolving a Simple Problem with Xpress-Mosel 28

C
o

n
so

le

X
p

re
ss

3

Exercise Using a text editor, save the model program of Listing 3.3
into a file, simple.mos.

The Three Pillars of Mosel

Solving our problem in Mosel is a three stage process which you will
become very familiar with over the following pages. Firstly, the model
program must be compiled, following which the compiled program is
loaded into Mosel and finally it is run. The commands that Mosel
provides to carry out this procedure are as follows:

Listing 3.3 A simple model

model simple
 uses "mmxprs"

 declarations
 a: mpvar
 b: mpvar
 end-declarations

 first:= 3*a + 2*b <= 400
 second:= a + 3*b <= 200
 profit:= a + 2*b

 maximize(profit)

 writeln("Profit is ", getobjval)
end-model

compile

This instructs Mosel to compile a model program file prior
to its use. Its single argument is the model’s filename. If
no extension is given, one of .mos will be assumed.

If you use a word
processor to enter
the model, make
sure you save the
file in "text only"
format.

Using the -g flag
with compile
provides additional
information for
debugging if errors
are encountered.
Xpress-MP Essentials Solving a Simple Problem with Xpress-Mosel29

3
C

o
n

so
le

X
p

re
ss
Exercise Starting up Mosel, compile, load and finally run the model
program simple.mos, but do not quit Mosel. What happens?

A full session describing the process you should have just gone
through is provided in Listing 3.4, with user input highlighted in bold.

During the first stage of this process, the model program stored in the
file simple.mos is compiled into a binary model, or BIM file,
simple.bim. If any syntax errors are detected in the model, error
information is displayed to the console, with details of the line and
character position where the error was detected and a description of
the error, if available. Warning messages are also displayed in this
manner, prefixed by a W rather than an E. By using the -g flag when
compiling, extra information is provided which can help identify
problems that are harder to spot, such as range errors. If no errors are
detected, the compiled model file is subsequently loaded into Mosel.

load

A compiled model program can be loaded into Mosel
using the load command.

run

This instructs Mosel to run the current program. Any
arguments following it are assumed to be initializing
parameters.

Listing 3.4 Compiling, loading and running model programs

C:\Mosel Files>mosel
** Xpress-Mosel **
(c) Copyright Dash Associates 1998-zzzz
>compile simple
Compiling `simple'...
>load simple
>run
Profit is 171.429
Returned value: 0
>

An example of set-
ting parameters in
this way may be
found in Chapter 5.

"Compilation
errors…"
Xpress-MP EssentialsSolving a Simple Problem with Xpress-Mosel 30

C
o

n
so

le

X
p

re
ss

3

Since the process of compilation and loading is one that is undergone
so frequently, Mosel provides a shortened command for
accomplishing both in one step.

In the final stage the compiled program is run and the objective
function maximized, as we asked. The optimum value of this is output
to the console.

Obtaining Further Information From Mosel

Knowing the maximum amount of profit that we can make in our
model is certainly useful, but how can it be achieved? Or rather, what
values of the decision variables result in the optimum profit value?
Such information could be obtained by altering our model to have the
values of a and b printed to the screen, but if the problem was large
and the solution process took a long time, recompiling and solving the
problem again would not be an attractive prospect. Fortunately
Mosel allows us to query the values of any of the variables or
constraints through use of the display command.

Exercise Using display, obtain the optimal values of the decision
variables. Check that these correspond to a = 114.286; b = 28.571.

cload (cl)

This instructs Mosel to compile a model program and load
the compiled binary model file. It may be shortened
further to cl if required. Its single argument is the model
program filename.

display

Following this, Mosel will display the value of the object
provided as its argument.

Mosel commands
can generally be
shortened to two
letters if there is no
conflict with other
commands. See the
Mosel Reference
Manual for details.
Xpress-MP Essentials Solving a Simple Problem with Xpress-Mosel31

3
C

o
n

so
le

X
p

re
ss
Going Further With Mosel

Running in Batch Mode

One of the main uses of Console Xpress is in batch production systems
for solving a large number of problems on a regular basis. While we
have so far only detailed the use of Mosel in interactive mode, its use
is not restricted to this: using the -c flag, Mosel may be run non-
interactively from the command line. An example of this is provided
in Listing 3.5, where our previous model file is compiled, loaded and
run in this manner.

Mosel expects a list of commands to follow the -c flag, contained in
quotes and with commands separated by semi-colons (;). By adding
the -s flag to the expression, Mosel runs silently, outputting only
information requested in the model file.

Exercise Run Mosel in batch mode both without and then with the
-s flag. Note the difference in output between the two.

Listing 3.5 Running Mosel in batch mode

C:\Mosel Files>mosel -c "cload simple; run"
** Xpress-Mosel **
(c) Copyright Dash Associates 1998-zzzz
>cload simple
Compiling `simple'...
> run
Profit is 171.429
Returned value: 0
>
Exiting.

C:\Mosel Files>

The full list of Mosel
flags may be found
by typing mosel -h
at the command
prompt.
Xpress-MP EssentialsGoing Further With Mosel 32

C
o

n
so

le

X
p

re
ss

3

Running Multiple Models

Another feature of Mosel enables several different models to be held
in memory and worked on simultaneously. One of these is designated
the active problem and by changing which problem has this status,
any of them can be run as necessary. To demonstrate this, we will
need another model, such as that given in Listing 3.6.

Exercise Using simple.mos as a template, create a new file,
altered.mos, containing the text of Listing 3.6.

As a model is loaded into Mosel, it becomes the active problem.
Whenever the run command is called, it is the active problem that will
be run, and when the display command is called, information about
the active problem is returned.

Listing 3.6 The altered model

model altered
 uses "mmxprs"

 declarations
 a: mpvar
 b: mpvar
 end-declarations

 first:= 3*a + 2*b <= 400
 second:= a + 3*b <= 200
 third:= 6*a + 5*b <= 800
 profit:= a + 2*b

 maximize(profit)

 writeln("Profit is ", getobjval)
 writeln(" a = ", getsol(a), "; b = ", getsol(b))
end-model

The only changes in
the model between
this and Listing 3.3 is
the imposition of a
new constraint. You
can expect the
objective function
value to decrease if
this constraint is
binding.
Xpress-MP Essentials Going Further With Mosel33

3
C

o
n

so
le

X
p

re
ss
Exercise Starting up Mosel, load firstly simple.bim (it should
already be compiled) and then compile and load the new problem,
‘altered’. Using run, obtain a solution to the altered problem.

A full list of all the loaded problems can be obtained by issuing the
command list at the Mosel prompt. In our case, this will return
details about the two problems, ‘simple’ and ‘altered’. The active
problem, in this case ‘altered’, has a star on the left against its name
to denote this fact. The active problem can be changed using the
select command, as shown in Listing 3.7.

Exercise List the problems currently loaded in Mosel and set ‘simple’
as the active problem. When you type run now, it should be this that
is solved.

Further models can be loaded into Mosel using load or cload.
Models can also be removed from Mosel using delete. Note that use

Listing 3.7 Viewing and setting the active problem in Mosel

>list
* name: altered number: 2 size: 3832
 Sys. com.: `altered.mos'
 User com.:
- name: simple number: 1 size: 3176
 Sys. com.: `simple.mos'
 User com.:
>select simple
Model 1 selected.
>list
- name: altered number: 2 size: 3832
 Sys. com.: `altered.mos'
 User com.:
* name: simple number: 1 size: 3176
 Sys. com.: `simple.mos'
 User com.:
>

Xpress-MP EssentialsGoing Further With Mosel 34

C
o

n
so

le

X
p

re
ss

3

of the delete command only unloads a model from Mosel and does
not delete the model file.

Exercise Using delete altered, unload the new problem from
Mosel. Using list, check that only ‘simple’ is left loaded.

Writing Matrix Files

Occasionally a model must be solved and its matrix subsequently
altered, requiring more interaction with the user than that provided
by Mosel. On the other hand, perhaps the same problem may need to
be given to someone else to use. In such cases, a model matrix file is
required from Mosel so that the problem can be input into another
program. Mosel supports writing matrix files in both MPS and LP
format using the exportprob command from the Mosel prompt.

list

This lists the problems currently loaded in Mosel. The
active problem is distinguished with a star.

select

This allows a new problem to be selected as active. Its
single argument is either the name or number of that to
be set as the active problem.

delete

Deletes a problem from Mosel.

exportprob

Used on its own this prints the matrix to the console in LP
format. With the -m flag, the MPS format is output. By
adding a filename as an argument, the matrix is exported
to the named file.

exportprob can
also be used from
within the model.
For an examples, see
Listing 3.11.
Xpress-MP Essentials Going Further With Mosel35

3
C

o
n

so
le

X
p

re
ss
Exercise Using

exportprob -m simple.mat

generate the matrix file for the problem ‘simple’ in MPS format. View
the file using a text editor.

Unlike the MPS format, LP files also contain information about
whether the model describes a maximization or minimization
problem. By default it is assumed that the objective function is to be
minimized unless stated otherwise. To export this problem in LP
format, the -p flag must be used to indicate that the objective
function is to be maximized.

Exercise Output the matrix file for the problem ‘simple’ to the
console in LP format. Check that the matrix has been specified
correctly as referring to a maximization problem.

Working with the Xpress-Optimizer

Solving a Problem

In the exercises above you will have entered model programs into
Mosel and called the Optimizer as a library module to solve the
problem. The Optimizer can also be used as a stand-alone application,
however, and use of it in this way forms the basis for the remainder of
the chapter.

The Optimizer accepts problem matrix files as input in either of the
main industry standard formats: MPS or LP files. To attempt the
exercises in this chapter you will need a valid matrix file, such as the
MPS file produced above, simple.mat. With this file, all that need be
done to solve the problem is to load the completed matrix into the
Optimizer and maximize the objective function.
Xpress-MP EssentialsWorking with the Xpress-Optimizer 36

C
o

n
so

le

X
p

re
ss

3

A full session with the Optimizer is given in Listing 3.8, again with user
input highlighted in bold face. Having entered the problem name,
the command READPROB is used to read in the MPS file created by
Mosel and then MAXIM is called to maximize the objective function:
the expression labelled profit in Listing 3.3.

Exercise Following Listing 3.8, load the file simple.mat into the
Optimizer and maximize the objective function. Issue the command
WRITEPRTSOL before quitting.

Viewing the Solution

Solution information from the Optimizer is output in a number of
different ways which we briefly discuss. The output sent to the screen
by the MAXIM command in Listing 3.8 shows on the lines above the
WRITEPRTSOL command that an optimal solution to the problem has
been found, giving a value of 171.428571 to the objective function.
This is our first indication of the solution, along with a set of problem
statistics, which are output as the matrix is loaded.

The problem statistics provide a useful sanity check for interpreting
the solution. It is from these that we may check that the matrix loaded
actually corresponds to the problem that we want to solve. In the
current example, Listing 3.8 tells us that the matrix has three rows,
corresponding to the two constraints and one objective function.
Furthermore, it has two columns, corresponding to the two decision
variables. Since both decision variables feature in all three of the
rows, we might expect the number of nonzero elements in the matrix

Loading an MPS File into the Optimizer

Start optimizer as before and at the prompt enter the
problem name, problem_name. At the following prompt
issue the Optimizer command READPROB. Hit return and
the Optimizer reads in the file problem_name.mat.

Maximizing the Objective Function

Once an MPS file has been loaded, issue the Optimizer
command MAXIM at the following prompt. The objective
function is maximized.

You would type
MINIM instead if this
were a minimization
problem.
Xpress-MP Essentials Working with the Xpress-Optimizer37

3
C

o
n

so
le

X
p

re
ss
to be . Finally, from the global statistics we learn that ours
is not a MIP problem: it contains no entities, no (special ordered) sets
and consequently no set members.

The Optimizer also produces more detailed output which may be
accessed by the user. In Listing 3.8, we have written this to the file
simple.prt using the WRITEPRTSOL command. The same output
may be sent to the screen using the PRINTSOL command.

Listing 3.8 A first full session with the Optimizer

C:\Optimizer Files> optimizer
XPRESS-MP Integer Barrier Optimizer Release xx.yy
(c) Copyright Dash Associates 1984-zzzz
Enter problem name >simple
>READPROB

Reading Problem simple
Problem Statistics
 3 (0 spare) rows
 2 (0 spare) structural columns
 6 (0 spare) non-zero elements
Global Statistics
 0 entities 0 sets 0 set members
>MAXIM
Presolved problem has: 2 rows 2 cols 4 non-zeros
Crash basis containing 0 structural columns created

 Its Obj Value S Ninf Nneg Sum Inf Time
 0 .000000 p 0 0 .000000 1
 2 171.428571 P 0 0 .000000 1
Uncrunching
 2 171.428571 P 0 0 .000000 1
Optimal solution found
>WRITEPRTSOL
>QUIT

C:\Optimizer Files>

The Optimizer is not
case-sensitive, so
commands may be
issued as lower case
if desired. We will
use upper case here
to reflect the
descriptions in the
reference manual.

3 2× 6=

‘Global entities’ is
used as an umbrella
term in Xpress-MP
to describe non-
continuous variables
and special ordered
sets.
Xpress-MP EssentialsWorking with the Xpress-Optimizer 38

C
o

n
so

le

X
p

re
ss

3

Output from WRITEPRTSOL

The output from WRITEPRTSOL is an ASCII text file suitable for
sending to a printer. This file may be naturally split up into three
sections to understand its structure, as demonstrated in Listing 3.9.

Outputting a Full Solution

After optimizing the objective function, use either the
PRINTSOL command to send output to the screen, or
WRITEPRTSOL to send it to the ASCII solution print file
problem_name.prt for later viewing

Listing 3.9 Output from the WRITEPRTSOL command

Problem Statistics
Matrix simple (Section 1)
Objective *OBJ*

RHS *RHS*
Problem has 3 rows and 2 structural columns

Solution Statistics
Maximization performed
Optimal solution found after 2 iterations
Objective function value is 171.428571

Rows Section (Section 2)
 Number Row At Value Slack Value Dual Value RHS
 N 1 *OBJ* BS 171.428571 -171.428571 .000000 .000000
 L 2 second UL 200.000000 .000000 .571429 200.000000
 L 3 first UL 400.000000 .000000 .142857 400.000000

Columns Section (Section 3)
 Number Column At Value Input Cost Reduced Cost
 C 4 a BS 114.285714 1.000000 .000000
 C 5 b BS 28.571429 2.000000 .000000
Xpress-MP Essentials Working with the Xpress-Optimizer39

3
C

o
n

so
le

X
p

re
ss
The sections are perhaps most usefully considered in the order Section
1, Section 3, Section 2. Section 1 contains summary statistics about
the solution process. It gives the matrix (problem) name (simple) and
the objective function and right hand side names that have been used.
Following this are the number of rows (constraints including the
objective function) and columns (variables), the fact that it was a
maximization problem, that it took two iterations (steps) to solve, and
that the best solution has a value of 171.428571.

The optimal values of the decision variables are given in Section 3, the
Columns Section. The Value column gives the optimal value of each
variable. Additional solution information such as the Input Cost and
Reduced Cost for each of the variables is also provided here. See
Chapter 7, “Glossary of Terms” for details of these.

The final section to consider is Section 2, the Rows Section. This gives
a list of the various constraints and objective function of the problem,
along with the value of the "left hand side" of the expression. In
particular, the value of the objective function turns up here again.
Slack values and Dual values for the constraints can also be obtained
from here. See Chapter 7, “Glossary of Terms” for details of these.

Exercise View the output file simple.prt which you have just
created and identify the various sections. Check your results for the
decision variables and objective function with those in the listing.

Going Further with the Optimizer

Optimization Algorithms

The Optimizer supports a number of different algorithms for solving
LP problems, although by default the dual simplex algorithm is used.
For some problems, however, changing the algorithm may result in a
considerable change in the time taken to solve a problem, and either
of the primal simplex or Newton barrier algorithms may produce a

"Section 1…"

"Section 3…"

"Section 2…"
Xpress-MP EssentialsGoing Further with the Optimizer 40

C
o

n
so

le

X
p

re
ss

3

solution in a shorter time. Choosing the ‘best’ algorithm to use in a
given situation is something of an art in itself, but often the best
choice is evident from experimenting with the different algorithms on
your own problems.

The simplest way to change the algorithm which will be used on a
problem is by setting flags which can be passed to MAXIM. These
correspond to each of the three algorithms discussed above:

Listing 3.10 demonstrates the changes from Listing 3.8 to use the
Newton barrier method for solving the problem. Only those lines
which involve user input are shown here.

Exercise Try solving the problem using each of the three algorithms
and note the difference in the output produced by each.

Integer Programming

For the problem considered above, the maximal value of the objective
function occurred when the decision variables took values a = 114.3
and b = 28.6, to one decimal place. For some problems, however,
fractional solutions such as this may be unacceptable and one or more
of the decision variables may be constrained to take only integer
values. Integer and mixed integer problems of this kind may also be

-b use the Newton barrier algorithm;
-d use the dual simplex algorithm;
-p use the primal simplex algorithm.

Listing 3.10 Using the Newton barrier algorithm

C:\Optimizer Files> optimizer
Enter problem name >simple
>READPROB
>MAXIM -b
>WRITEPRTSOL
>QUIT

C:\Optimizer Files>

"Choosing an
algorithm…"
Xpress-MP Essentials Going Further with the Optimizer41

3
C

o
n

so
le

X
p

re
ss
solved using Console Xpress and before we end this brief introduction
we will consider such a problem

In Listing 3.11, two extra lines have been added to the previous model
to specify that a and b must take integer values. The other changes
allow Mosel to export an MPS matrix file ‘automatically’ when the
program is run.

Exercise Create a model file integral.mos containing the statements
of Listing 3.11 and run it in Mosel to write an MPS matrix file. Using
the Optimizer, solve the LP problem as before. What is the optimal
value of the objective function now?

The problem just solved specified that both a and b must be integers.
Furthermore, the objective function is a linear expression containing
only integer multiples of these variables. However, you probably
noticed that the optimum value of the objective function just
obtained is not integral!

Finding integer solutions using the Optimizer is a two-stage process.
For the first of these, the LP relaxation must be solved to find an

Listing 3.11 Adding integer constraints to our problem

model integral
 declarations
 a: mpvar
 b: mpvar
 end-declarations

 first:= 3*a + 2*b <= 400
 second:= a + 3*b <= 200
 profit:= a + 2*b

 a is_integer
 b is_integer

 exportprob(EP_MPS,"integral",profit)
end-model

The LP relaxation is
the previous prob-
lem, ignoring the
integrality of any
variables.
Xpress-MP EssentialsGoing Further with the Optimizer 42

C
o

n
so

le

X
p

re
ss

3

optimal solution. For the second, a global search must be carried out
to find the best integer solution, if one exists. The global search can
be called automatically following solution of the LP relaxation by
including the g flag to MAXIM and this is demonstrated in Listing 3.12.

When the global search completes, any integer solution found may be
viewed using PRINTSOL or WRITEPRTSOL as previously.

Exercise Solve the integer problem of Listing 3.11. What values of a
and b are required for the optimal solution? (They should now be
integral.)

Optimizer Controls

The Optimizer has a number of parameters, whose values may be
altered by the user through the setting of various controls. With some
thought, these can be used to fine tune the Optimizer’s performance
on particularly difficult problems and can result in significant savings
in the solution time. Whilst we do not encourage new users to change
the majority of these from their default values, there are a small
number with which experimentation may be useful. For the sake of
these, we briefly mention how this may be achieved. A full list of all
controls which can be set may be found in the Optimizer Reference
Manual.

Listing 3.12 Commands to solve the integer problem

READPROB
MAXIM -g
WRITEPRTSOL
QUIT

Starting the Global Search for Integer Solutions

Issue the command MAXIM -g at the optimizer prompt.
The Branch and Bound method is then employed to find
an integer solution to the problem.

MAXIM -g is
equivalent to calling
MAXIM, immediately
followed by the
command GLOBAL.
Xpress-MP Essentials Going Further with the Optimizer43

3
C

o
n

so
le

X
p

re
ss
We saw earlier how the algorithm used for optimization may be
changed from its default using flags to MAXIM. The default algorithm
itself is set by the control DEFAULTALG which is an integer describing
which algorithm should be applied in the following way:

The default algorithm may be changed for a complete session using
DEFAULTALG, removing the need for p, d and b flags to MAXIM (or
MINIM).

Exercise Issue the control DEFAULTALG at the optimizer command
prompt to find out its current value as in Listing 3.13.

Exercise Set the value of the control DEFAULTALG to 4 so as to use the
Newton barrier algorithm. This must be done before the call to MAXIM
which is affected by the value of this variable. Run the program again
and view the output.

Obtaining the Value of Controls

The value of a control for the Optimizer may be obtained
by typing its name at the optimizer prompt:

> CONTROL

Changing the Value of Controls

Controls for the Optimizer may be treated much like
standard programming variables and changed through an
assignment at the prompt:

> CONTROL = value

Changing the Default Optimization Algorithm

Set the control variable DEFAULTALG to:

1 for the algorithm to be determined automatically;

2 to use the dual simplex algorithm;

3 to use the primal simplex algorithm;

4 to use the Newton Barrier algorithm.

"Changing the
algorithm used
by default…"
Xpress-MP EssentialsGoing Further with the Optimizer 44

C
o

n
so

le

X
p

re
ss

3
Getting Help

If you have worked through the chapter this far, you have learnt how
to use Mosel to compile, load and run model program files, to access
the solution to a problem using the Optimizer as a library module
within Mosel and to export problems as matrix files. You have also
learnt how to load these files into the Optimizer, to optimize them,
view the solution, and change controls affecting how the
optimization works. Up to this point we have been concentrating
solely on how to enter and optimize a particular existing model. In
Chapter 5, however, the basics of the Mosel model programming
language are explained, allowing you to model and solve your own
problems. You may wish to turn there next. The following chapter
contains information about using the Xpress-MP Libraries and may be
safely skipped if you intend only to use Xpress-IVE or Console Xpress.
If you require additional help on using either Mosel or the Optimizer,
this may be obtained from the Mosel and Optimizer Reference
Manuals respectively.

Listing 3.13 Obtaining the value of controls

C:\Optimizer Files> optimizer
XPRESS-MP Integer Barrier Optimizer Release xx.yy
(c) Copyright Dash Associates 1984-zzzz
Enter problem name >simple
>READPROB
>DEFAULTALG
1
>

Xpress-MP Essentials Getting Help45

3
C

o
n

so
le

X
p

re
ss
Summary

In this chapter we have learnt how to:

compile, load and run models using Mosel;

export problem matrix files;

solve linear problems and access the solutions;

solve integer problems;

change the solution algorithm;

access and alter the values of Optimizer controls.
Xpress-MP EssentialsGetting Help 46

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

4The Xpress-MP LibrariesChapter 4
The Xpress-MP Libraries

Overview
In this chapter you will:
• meet the different Xpress-MP libraries;
• learn how to compile, load and solve problems written in the Mosel language using

the Mosel libraries;
• learn how to build and solve models using Xpress-BCL;
• learn how to load and solve problems using the Xpress-Optimizer library;
• learn about using the libraries with different programming languages.

Getting started

The Xpress-MP Libraries provide an interface to the Xpress-Mosel and
Xpress-Optimizer engines, allowing users to call Xpress-MP routines
from within their own programs. If you are reading this chapter, we
shall assume that you have already installed the Xpress-MP Libraries
on your system. Over the course of this chapter we will input and solve
a simple problem using the subroutine libraries, much as we did for
the Xpress-IVE and Console Xpress chapters, as well as exploring other
possibilities. You may find it helpful to work through the Console
Xpress chapter before reading this, although it will not be assumed
that you have done so.
Xpress-MP Essentials Getting started47

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

The Components of the Xpress-MP Libraries

Xpress-MP essentially comprises three main components — Mosel, BCL
and the Optimizer. The Xpress-MP Libraries constitute an interface to
these, providing access to them in a number of different ways. Whilst
there are several such libraries available to users, only the three of
direct relevance to these will be discussed in any detail in this chapter:

• The Mosel Libraries allow you to compile, load and run model
files, directly accessing the Optimizer as a module to solve
multiple problems. Moreover, they enable you to take full
advantage of the flexible Mosel model programming language
within your application code;

• the Xpress-MP Builder Component Library (Xpress-BCL) works
slightly differently, providing a separate modeling environment
to Mosel, allowing models to be constructed within the user’s
program, either generating an output file, or passing the
matrix directly to the Optimizer;

• the Optimizer Library provides for the input, manipulation and
optimization of matrix files, giving access to the solution in a
number of ways.

Over the following sections each of these libraries will be introduced,
before information of general interest to library users is given. For the
most part, examples in this chapter will be given in the C
programming language, which is widely used in calling the Xpress-MP
libraries and is consequently the language on which the Reference
Manuals are based. However, other languages supported include
C++, Visual Basic and Java, and the chapter ends with an overview of
using the libraries with the last two of these.
Xpress-MP EssentialsGetting started 48

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Working with the Mosel Libraries

Entering a Simple Model

To begin the chapter, we will discover how the Mosel libraries can be
used to input and solve the same simple model that has been used
previously. This model, given in Listing 4.1, is written in the Mosel
model programming language and has just two decision variables (a
and b) and two constraints (first and second). The aim is to
maximize the objective function, profit.

Problems such as this are presented to the Mosel libraries by way of
model input files. These are ASCII text files describing the model as
well as any processing information which Mosel is expected to carry
out. By default, Mosel files are assumed to have a .mos extension and
this is the convention that we will adopt in this chapter.

Listing 4.1 A simple model

model simple
 uses "mmxprs"

 declarations
 a: mpvar
 b: mpvar
 end-declarations

 first:= 3*a + 2*b <= 400
 second:= a + 3*b <= 200
 profit:= a + 2*b

 maximize(profit)

 writeln("Profit is ", getobjval)
end-model
Xpress-MP Essentials Working with the Mosel Libraries49

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Exercise Enter the model of Listing 4.1 into a file simple.mos using
your favorite text editor. You may have already done this if you
worked through the exercises in the Console Xpress chapter
previously.

Components of the Mosel Libraries

The Mosel libraries consist of a run time library, xprm_rt, and a
compiler library, xprm_mc. Of the two, the run time library is the main
one, containing routines for initialization and termination of Mosel,
prior to and following use. The compiler library, by contrast, contains
only a single routine, used for the compilation of Mosel model
program files. In general, the run time library will often be used on its
own. On the occasions when the compiler library is also used, both
header files must be included in your code and the initialization
routine from the run time library must be called before the compiler
routine is used. In this section we will demonstrate use of both of
these libraries, resulting in the following general structure for a Mosel
library program:

The Three Pillars of Mosel

Solving a problem using the Mosel library is a three stage process
which you will become very familiar with over the following pages.

Listing 4.2 Structure of a Mosel library program

#include "xprm_rt.h"
#include "xprm_mc.h"

int main(void)
{
 XPRMinit();

 program statements

 XPRMfree();
 return 0;
}

Xpress-MP EssentialsWorking with the Mosel Libraries 50

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

The model program, once written, must first be compiled, following
which the compiled program is loaded into Mosel and finally it is run.
There are three routines provided by the Mosel libraries for these
purposes:

Listing 4.3 shows how these may be used to compile, load and run the
model saved earlier.

Exercise Write and run a program to compile, load and run the model
simple.mos. What is the maximum profit obtainable in our model?

XPRMcompmod

This calls Mosel to compile a model file into a BInary
Model (or BIM) file. It takes four arguments:

• the first includes options for the compilation process;
• the second is the name of the model source file;
• the third is the name of the destination file and may be

NULL;
• the fourth contains any commentary text to be saved at

the beginning of the output file.

This is the only command in the model compiler library.

XPRMloadmod

This instructs Mosel to load a binary model file and takes
two arguments:

• the first is the name of the file;
• the second is the model’s internal name and may be

NULL.
XPRMloadmod returns a problem pointer, a variable of
type XPRMmodel.

XPRMrunmod

Runs the model within Mosel. Its three arguments are:

• the problem pointer;
• a pointer to an area where the result value is returned;
• a string of parameter initializations, which may be

NULL.

Using a ‘g’ flag with
XPRMcompmod
provides additional
information for
debugging if errors
are encountered.
This is particularly
useful with range
errors, which are
difficult to spot.

An example of set-
ting parameters in
this way may be
found in Chapter 5.
Xpress-MP Essentials Working with the Mosel Libraries51

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

If you are experiencing difficulties with this exercise, it may be that the
Mosel libraries cannot find important security system files that it
needs, or that it cannot locate other libraries / DLLs. For details of how
to set up the Xpress-MP security system, see the ‘readme’ files on the
CD-ROM, which also contain details of setting up the libraries with the
most commonly available compilers.

Obtaining Solution Information

Part of the model in Listing 4.1 called upon Mosel to output the
maximal value of the objective function once it had been found. In
the same way, the model could have been written to output the
optimal values of the decision variables, or other such information and
we will see examples of this later. However, the Mosel run time library
provides a number of functions for obtaining details of the solution
such as this, allowing solution information to be used directly in your
application. Two such functions are the following:

Listing 4.3 Compiling, loading and running model ‘simple’

#include <stdio.h>
#include "xprm_rt.h"
#include "xprm_mc.h"

int main(void)
{
 XPRMmodel simple;
 int nReturn;

 XPRMinit();
 XPRMcompmod("","simple.mos",NULL,"Simple Example");
 simple = XPRMloadmod("simple.bim",NULL);
 XPRMrunmod(simple,&nReturn,NULL);

 XPRMfree();
 return 0;
}

Xpress-MP EssentialsWorking with the Mosel Libraries 52

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Returning the objective function value is the simpler of these two.
Obtaining values of decision variables is a somewhat more involved
process, in which the dictionary entry corresponding to the particular
variable name must first be returned by Mosel, using the library
function XPRMfindident. This returns a generic type, which must be
cast as an XPRMmpvar variable before finally being employed by
XPRMgetvsol to return the value. In Listing 4.4 we demonstrate both
these functions and their use, with changes from Listing 4.3
highlighted in a bold type face.

XPRMgetobjval

Returns the objective function value to double precision.
Its single argument is the problem pointer.

XPRMgetvsol

Returns the value of a decision variable to double
precision. It takes two arguments:

• the problem pointer;
• a reference to a decision variable.

Listing 4.4 Obtaining solution information

#include <stdio.h>
#include "xprm_rt.h"
#include "xprm_mc.h"

int main(void)
{
 XPRMmodel simple;
 XPRMalltypes atvar;
 XPRMmpvar a, b;
 int nReturn;

 XPRMinit();
 XPRMcompmod("","simple.mos",NULL,"Simple Example");
 simple = XPRMloadmod("simple.bim",NULL);
 XPRMrunmod(simple,&nReturn,NULL);
Xpress-MP Essentials Working with the Mosel Libraries53

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Exercise Alter your previous program to obtain the optimal values of
the decision variables, a and b.

The Mosel run time library contains a large number of other functions,
similar in nature to XPRMgetvsol, for returning the reduced costs
(XPRMgetrcost), slack values (XPRMgetslack) and dual values
(XPRMgetdual). Details of using these may be found in the Mosel
Reference Manual.

Going Further with the Mosel Libraries

Working with Several Models

Users of Xpress-MP often find that they need to develop a number of
different models in parallel, regularly alternating between them in
their applications. The Mosel libraries allow any number of models to
be held in memory and worked on simultaneously, limited only by the
constraints of system resources and your license details. As with all
Xpress-MP products, model management in the Mosel libraries is

 XPRMfindident(simple,"a",&atvar);
 a = atvar.mpvar;
 XPRMfindident(simple,"b",&atvar);
 b = atvar.mpvar;

 printf("The maximal profit is %g\n",
XPRMgetobjval(simple));

 printf("a = %g\nb = %g\n",
XPRMgetvsol(simple,a), XPRMgetvsol(simple,b));

 XPRMfree();
 return 0;
}

Listing 4.4 Obtaining solution information
Xpress-MP EssentialsGoing Further with the Mosel Libraries 54

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

based on the concept of a problem pointer which distinguishes
between the models currently loaded and allows you to keep track of
which is being worked on at any given instance.

A problem pointer, or reference, is returned by the XPRMloadmod
routine as we have already seen in the previous exercises and listings.
It is this which is passed as the first argument to most of the routines
which act on a model, so unlike Console Mosel, there is no concept of
an active model in this case.

Exercise Enter the model of Listing 4.5 into a file altered.mos and
adapt your previous program to compile, load and run both ‘simple’
and ‘altered’ consecutively.

During use, Mosel maintains a list of the models currently in memory,
placing new models at the beginning of the list as they are loaded.
Models can be selected sequentially from this list using the function
XPRMgetnextmod, providing a convenient method for cycling
through a large number of models. Information about a given model

Listing 4.5 An altered model

model altered
 uses "mmxprs"
 declarations
 a, b: mpvar
 end-declarations

 first:= 3*a + 2*b <= 400
 second:= a + 3*b <= 200
 third:= 6*a + 5*b <= 800
 profit:= a + 2*b

 maximize(profit)

 writeln("Profit is ", getobjval)
end-model

The only changes in
the model between
this and Listing 4.1 is
the imposition of a
new constraint. You
can expect the
objective function
value to decrease if
this constraint is
binding.
Xpress-MP Essentials Going Further with the Mosel Libraries55

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

can be retrieved using XPRMgetmodinfo. Once a model is no longer
needed, it can be unloaded to free resources using XPRMunloadmod.

Whilst these functions would not normally be used with just two
models, Listing 4.6 provides an example of their use which might easily
be extended to cover a larger number of models.

XPRMgetmodinfo

Returns information about the model specified by a given
problem pointer. It takes five arguments following the
problem pointer, which are also pointers:

• the first to where the model name may be returned;
• the second to where the model number is returned;
• the third to where system comment is returned;
• the fourth to where user comment is returned;
• the fifth to where the amount of memory used is

returned.

Any of these five may be NULL if not required.

XPRMgetnextmod

Returns the pointer to the next model in the list after the
one given as an argument. If the argument is NULL, the
first model in the list is returned. If the argument is the
last model in the list, XPRMgetnextmod returns NULL.

XPRMunloadmod

Instructs Mosel to unload a model and free any memory or
resources associated to that model. Its single argument is
the problem pointer.
Xpress-MP EssentialsGoing Further with the Mosel Libraries 56

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Exercise Enter the and run the program of Listing 4.6. Since you will
have compiled both ‘simple’ and ‘altered’ in the last exercise, you will
not need to include the compiler library xprm_mc here, and can omit
the two lines using XPRMcompmod.

Listing 4.6 Working with multiple models

#include <stdio.h>
#include "xprm_rt.h"
#include "xprm_mc.h" /* if needed */

int main(void)
{
 XPRMmodel mod;
 int nReturn;
 const char *name;

 XPRMinit();

 /* uncomment the following two lines if needed */
/* XPRMcompmod("","simple.mos",NULL,"");
 XPRMcompmod("","altered.mos",NULL,""); */

 XPRMloadmod("simple.bim",NULL);
 XPRMloadmod("altered.bim",NULL); /*first in list*/

 /* return a pointer to the first item in list */
 mod = XPRMgetnextmod(NULL);

 while(mod != NULL)
 {
 XPRMgetmodinfo(mod,&name,NULL,NULL,NULL,NULL);
 printf("\nCurrent problem is ‘%s’\n", name);
 XPRMrunmod(mod,&nReturn,NULL);
 mod = XPRMgetnextmod(mod);
 }

 /* unload first item in list, i.e. ’altered’ */
 XPRMunloadmod(XPRMgetnextmod(NULL));

 XPRMfree();
 return 0;
}

Xpress-MP Essentials Going Further with the Mosel Libraries57

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Run Time Management

Once a model is loaded, it is run using the XPRMrunmod routine. A
user can check to see if a given model is still running at any time using
XPRMisrunmod and a run can be terminated using XPRMstoprunmod.

These two routines are frequently used together in applications with
large modeling problems which are likely to take a long time to solve.
Listing 4.7 provides an example of this, where the ‘Ctrl-C’ key
combination can be used to interrupt a model in the middle of a run.

XPRMisrunmod

This checks if a model is still running. Its single argument
is the problem pointer and it returns 1 if the model is
running and 0 otherwise.

XPRMstoprunmod

This interrupts the run of a model. Its single argument is
the problem pointer.

Listing 4.7 Ending a model run cleanly

#include <stdio.h>
#include <signal.h>
#include "xprm_rt.h"

XPRMmodel mod;

void end_run(int sig)
{
 if(XPRMisrunmod(mod)) XPRMstoprunmod(mod);
}

Xpress-MP EssentialsGoing Further with the Mosel Libraries 58

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Writing Matrix Files

Occasionally a model must be solved and its matrix subsequently
altered, requiring more interaction with the user than that provided
by Mosel. On the other hand, perhaps the same problem may need to
be passed to someone else for use. In such cases, a matrix file is
required from Mosel so that the problem can be input into another
program. The Mosel libraries support writing of matrix files in both
MPS and LP format using the XPRMexportprob routine.

int main(void)
{
 int nReturn;

 XPRMinit();
 mod = XPRMloadmod("bigmodel.bim",NULL);
 signal(SIGINT,end_run); /* Redirect Ctrl-C */

 XPRMrunmod(mod,&nReturn,NULL);
 XPRMfree();
 return 0;
}

XPRMexportprob

This instructs Mosel to write a matrix file in MPS or LP
format. It takes four arguments:

• the problem pointer;
• format of the output, which can be one of "m" for MPS

format, "" for LP format (minimization), "p" for LP
format (maximization) or "s" for scrambled names;

• a filename for the output — if NULL, the output is
printed to the console;

• the objective to use, which may be NULL.

Listing 4.7 Ending a model run cleanly
Xpress-MP Essentials Going Further with the Mosel Libraries59

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Exercise Alter your model to write an MPS matrix file, simple.mat,
for the problem. Now generate an appropriate LP format matrix file,
simple.lp.

Use of XPRMexportprob to create an MPS file is demonstrated in
Listing 4.8. Compare this with what you have just done.

Having got this far, you should now be able to use the Mosel libraries
to compile, load and solve model programs, access their solution
values from your application, handle multiple problems and export
matrix files in standard formats. In the next chapter we will learn
more about the Mosel model programming language itself, enabling
you to create your own models to solve in this way. In the following
section, however, we will see how the same tasks as those above may
be achieved using BCL. If you will not be using BCL, you may want to
skip to page 74 where the Optimizer library will be introduced, view
the material contained in the section “Getting the Best out of the
Xpress-MP Libraries” on page 95, or find out more about the Mosel
language in Chapter 5.

Listing 4.8 Generating an MPS matrix file

#include <stdio.h>
#include "xprm_rt.h"

int main(void)
{
 XPRMmodel simple;
 int nReturn;

 XPRMinit();
 simple = XPRMloadmod("simple.bim",NULL);
 XPRMrunmod(simple,&nReturn,NULL);
 XPRMexportprob(simple,"m","simple",NULL);
 XPRMfree();
 return 0;
}

If no filename
extension is given,
MPS files will have
.mat appended and
LP files will have
.lp appended.
Xpress-MP EssentialsGoing Further with the Mosel Libraries 60

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Working with Xpress-BCL

We have already seen how the Mosel libraries can be used to compile,
load and run model program files, invoking the Optimizer to find a
solution. Whilst this will often suffice for most needs, sometimes you
might want more flexibility, creating models directly from within your
own programs. There are essentially three ways in which this might
be done:

• use the program to create a model file and compile, load and
run it using the Mosel libraries;

• use BCL to build the model dynamically;
• use the program to construct the model locally and load it

directly into the Optimizer with the Optimizer library.

The first of these is related to the material that has gone before and
will not be considered further. The second is the subject of this section
and the third will be discussed in the material on the Optimizer library
following.

The Xpress-MP Builder Component Library (Xpress-BCL) provides a
different library environment in which models may be created. BCL
programs may be relatively simple, geared toward building a specific
type of model, as we will do in the next few pages. More usually,
however, BCL is used for the development of complete software
systems containing mathematical programming models and
optimization.

Completed models may be output by BCL in a number of file formats.
Alternatively, they may be loaded directly into the Optimizer and
either solved directly using BCL, or manipulated further using
Optimizer library commands. Each of these possibilities will be
discussed.

As in previous sections and chapters, the approach here will again be
to use BCL to build the simple model described in Listing 4.1 on
page 49. You may therefore find it helpful to keep a finger in that
page so you can refer back to the model as necessary.
Xpress-MP Essentials Working with Xpress-BCL61

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

A First Formulation for the Model

To build our simple model using BCL requires a translation of the
model statements into the Builder language. We begin this in Listing
4.9.

There are just five simple statements here, declaring the decision
variables, constraints and problem pointer, initializing the library and
creating the problem.

Following declaration, adding the variables is a relatively simple task,
although more information is required than is evident from Listing
4.1. We must additionally set the type and bounds, as in Listing 4.10.

Listing 4.9 Declaration of structures and initialization

XPRBvar a, b;
XPRBctr first, second, profit;
XPRBprob prob;

XPRBinit("");
prob = XPRBnewprob("simple");

XPRBinit

Initializes the BCL environment. Its single argument may
be used to specify the path used in searching for the
Xpress-MP security files. If it is a null string, the default
search paths are used. The return code from this should
always be checked: a nonzero value indicates failure and
the program should terminate.

XPRBnewprob

Creates a new problem and sets its name. It takes a single
argument which is the problem name and returns a
pointer to the problem created, a variable of type
XPRBprob.

Although none of
the examples so far
have shown check-
ing of return codes,
we recommend that
such checks always
be carried out. See
“Error Checking” on
page 95 for details.
Xpress-MP EssentialsWorking with Xpress-BCL 62

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

With the decision variables defined, the constraints may be added, in
this case incrementally, as in Listing 4.11.

Listing 4.10 Adding the decision variables

a = XPRBnewvar(prob,XPRB_PL,"a",0,200);
b = XPRBnewvar(prob,XPRB_PL,"b",0,200);

XPRBnewvar

Adds a single variable. This takes five arguments:

• the first argument is the problem pointer;
• the second argument defines the type — XPRB_PL

means that it is a continuous, non-negative variable;
• the third argument is the name as it appears in the

output file and this is also the name which will later be
passed to the Optimizer;

• the last two specify the lower and upper bounds for the
variable. The latter may be set to infinity if there is no
bound.

It returns a variable of type XPRBvar.

Listing 4.11 Incrementally adding constraints

first = XPRBnewctr(prob,"First",XPRB_L);
XPRBaddterm(prob,first,a,3);
XPRBaddterm(prob,first,b,2);
XPRBaddterm(prob,first,NULL,400);

XPRBnewctr

Creates a new constraint. This takes two arguments
following the problem pointer, the first of which is the
constraint name, and the second of which is the constraint
type. XPRB_L means it is a constraint. It returns a
variable of type XPRBctr.

The bounds here are
derived from the
constraint Second,
although lower val-
ues may easily be
deduced.

≤

Xpress-MP Essentials Working with Xpress-BCL63

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

The objective function is added in much the same way as the
constraints without setting the right hand side term, however. It must
then be specified as the objective function using the XPRBsetobj
command. We demonstrate this in Listing 4.12.

Solving the Problem with BCL

With the model constructed, the next task is to find a solution. In
common with Mosel, BCL also contains functionality for loading
problems into the Optimizer, solving them and accessing the result.
The function XPRBmaxim may be used to call the Optimizer to find a
solution. Following this, the two functions XPRBgetobjval and
XPRBgetsol can be used to return the optimal value of the objective
function and values of the decision variables respectively. Finally,
standard print functions may be used to display these values to the
screen.

XPRBaddterm

Adds a term to the constraint. This takes three arguments
following the problem pointer:

• the first is a reference to a constraint, as resulting from
XPRBnewctr;

• the second is a variable, or NULL to add a constant to
the right hand side;

• the third is the value of the coefficient, or the right
hand side if the second argument is NULL.

Thus the second line in Listing 4.11 adds 3*a to the
constraint named First.

Listing 4.12 Adding the objective function

profit = XPRBnewctr(prob,"Profit",XPRB_N);
XPRBaddterm(prob,profit,a,1);
XPRBaddterm(prob,profit,b,2);
XPRBsetobj(prob,profit);

The row-type for
objective functions
is typically ‘uncon-
strained’, XPRB_N.
Xpress-MP EssentialsWorking with Xpress-BCL 64

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Putting all this together, a complete description of the model can be
found in Listing 4.13.

XPRBmaxim

Calls the Optimizer to solve the problem. It takes two
arguments, the first of which is the problem pointer and
the second is a string of option flags.

XPRBgetobjval

Returns the optimal objective function value.

XPRBgetsol

Returns the optimal values for the decision variables. It
takes two arguments, the first of which is the problem
pointer and the second is the variable whose value is
required.

Listing 4.13 A first formulation for the model

#include <stdio.h>
#include "xprb.h"

int main(void)
{
 double objval;
 XPRBvar a, b;
 XPRBctr first, second, profit;
 XPRBprob prob;

 if(XPRBinit("")) return 1;
 prob = XPRBnewprob("simple");

 /* adding the variables */
 a = XPRBnewvar(prob,XPRB_PL,"a",0,200);
 b = XPRBnewvar(prob,XPRB_PL,"b",0,200);

The xprb.h header
file contains all the
definitions for the
BCL functions.
Xpress-MP Essentials Working with Xpress-BCL65

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

The final two commands remove the problem from memory and free
other system resources. It is important to make sure that these are
called at the end of every program.

 /* adding the constraints */
 first = XPRBnewctr(prob,"First",XPRB_L);
 XPRBaddterm(prob,first,a,3);
 XPRBaddterm(prob,first,b,2);
 XPRBaddterm(prob,first,NULL,400);

 second = XPRBnewctr(prob,"Second",XPRB_L);
 XPRBaddterm(prob,second,a,1);
 XPRBaddterm(prob,second,b,3);
 XPRBaddterm(prob,second,NULL,200);

 profit = XPRBnewctr(prob,"Profit",XPRB_N);
 XPRBaddterm(prob,profit,a,1);
 XPRBaddterm(prob,profit,b,2);
 XPRBsetobj(prob,profit);

 XPRBmaxim(prob,"");

 /* retrieving the solution */
 objval = XPRBgetobjval(prob);
 printf("The maximum profit is %f\n", objval);
 printf(" a = %f, b = %f\n",XPRBgetsol(prob,a),

XPRBgetsol(prob,b));

 XPRBdelprob(prob);
 XPRBfree();
 return 0;
}

XPRBdelprob

Removes a problem from memory. Its single argument is
the problem pointer.

XPRBfree

Frees other system resources currently being used.

Listing 4.13 A first formulation for the model
Xpress-MP EssentialsWorking with Xpress-BCL 66

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Exercise Type in the BCL program of Listing 4.13 to enter and solve
the simple problem of Listing 4.1, returning the solution values to
screen.

By default, no program output is provided by BCL unless it is written
into the application explicitly. This can be advantageous if we only
want to return the values of the decision variables and the objective
function, as above, but there are times when you might want to know
more about how the optimization is progressing before a solution is
returned. In such circumstances, console output in the form of a log
file may be provided by increasing the message level from 0. When
set to 3, BCL outputs all messages, including any passed to it by the
Optimizer, giving access to the problem statistics and the objective
function value at various points during the solution process. If this is
required, the message level must be set before the problem is input.

Exercise Add the line

XPRBsetmsglevel(prob,3);

to the above program directly following the XPRBnewprob command
and rebuild the program. Run it and view the output.

Formulating the Problem Using Array Variables

The incremental nature of building up the program, employed above,
can result in programs which are unnecessarily lengthy. However, an
alternative approach can be employed, making the program more
concise, by framing the model in terms of variable arrays. This we now
demonstrate.

We begin the description by declaring a new array variable, x, shown
in Listing 4.14.

Listing 4.14 Array variables

XPRBarrvar x;
 ...
x = XPRBnewarrvar(prob,2,XPRB_PL,"x",0,200);
Xpress-MP Essentials Working with Xpress-BCL67

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

The two new statements here declare the variable type and then
provide information about it, much as with the XPRBnewvar function
previously. The additional argument gives the size of the array.

The only constraint that need be declared this time is the objective
function, since this will eventually be passed to XPRBsetobj. The
other constraints will be defined using XPRBnewarrsum functions.
Listing 4.15 shows the relevant sections.

In particular, we define here three arrays holding the coefficients for
each of the left hand sides of the constraints, calling them FIRST,
SECOND and PROFIT. These are then multiplied (as a scalar product)
by the array variable, x, to form the left hand sides of the constraints.

XPRBnewarrvar

Defines a new array of variables. The first argument is the
problem pointer, the second states the size of the array.
The next four give the same information as XPRBnewvar.
It returns a variable of type XPRBarrvar.

Listing 4.15 Array constraints

double FIRST[] = {3,2};
double SECOND[] = {1,3};
double PROFIT[] = {1,2};
 ...
XPRBctr profit;
 ...
XPRBnewarrsum(prob,"First",x,FIRST,XPRB_L,400);
XPRBnewarrsum(prob,"Second",x,SECOND,XPRB_L,200);
profit=XPRBnewarrsum(prob,"Profit",x,PROFIT,XPRB_N,0);
XPRBsetobj(prob,profit);
Xpress-MP EssentialsWorking with Xpress-BCL 68

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

The model ends in the usual way by solving the problem and
outputting a solution. A full listing is given in Listing 4.16.

XPRBnewarrsum

Defines a new constraint left hand side by taking two one-
dimensional arrays, one of variables and one containing
coefficients and multiplying them component-wise. This
may be represented mathematically as:

It takes five arguments after the problem pointer:

• the first is the constraint name;
• the second is the variable array;
• the third is the array of coefficients;
• the fourth is the constraint type;
• the final argument is the constraint bound.

Listing 4.16 The full model, ‘arraymod’

#include <stdio.h>
#include "xprb.h"

double FIRST[] = {3,2};
double SECOND[] = {1,3};
double PROFIT[] = {1,2};

int main(void)
{
 double objval;
 XPRBarrvar x;
 XPRBctr profit;
 XPRBprob prob;

 if(XPRBinit("")) return 1;
 prob = XPRBnewprob("arraymod");

 /* adding the variables */
 x = XPRBnewarrvar(prob,2,XPRB_PL,"x",0,200);

a x⋅ aixi

i
�=

The final argument
is ignored if the con-
straint type is ‘non-
binding’, XPRB_N.
Xpress-MP Essentials Working with Xpress-BCL69

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Exercise Type in the new model, build it and run it to view the
solution.

Going Further with BCL

Integer Programming

For the simple problem of Listing 4.1, we have seen that the maximum
value of the objective function occurs when the decision variables take
the values a = 114.3 and b = 28.6, to one decimal place. For some
problems, however, fractional solution values such as these may not
be appropriate, perhaps because the solution is only meaningful if the
variables are integral.

 /* adding the constraints */
 XPRBnewarrsum(prob,"First",x,FIRST,XPRB_L,400);
 XPRBnewarrsum(prob,"Second",x,SECOND,XPRB_L,200);
 profit=XPRBnewarrsum(prob,"Profit",x,PROFIT,
 XPRB_N,0);
 XPRBsetobj(prob,profit);

 XPRBmaxim(prob,"");

 /* retrieving the solution */
 objval = XPRBgetobjval(prob);
 printf("The maximum profit is %f\n", objval);
 printf(" a = %f, b = %f\n",XPRBgetsol(prob,x[0]),

XPRBgetsol(prob,x[1]));
 XPRBdelprob(prob);
 XPRBfree();
 return 0;
}

Listing 4.16 The full model, ‘arraymod’
Xpress-MP EssentialsGoing Further with BCL 70

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Working with integer variables in BCL is simply a case of specifying the
variable type appropriately when it is created with XPRBnewvar or
XPRBnewarrvar. Where we previously worked with continuous
variables, of type XPRB_PL, integer variables have type XPRB_UI. The
relevant change to implement this in your last example would be:

x = XPRBnewarrvar(prob,2,XPRB_UI,"x",0,200);

The new problem is not as simple as the original, however, requiring
a more complicated method to find a solution — a global search must
now be employed to find an integer solution. This is employed using
the optional g flag with the solution routine:

XPRBmaxim(prob,"g");

With these two changes made, your program is ready to be run.

Exercise Alter the model of Listing 4.16 to make both a and b integer
variables and solve the global problem. What values of the decision
variables are necessary to achieve the maximum profit?

In the situation where only a few of the variables in your array need
be integral, a little more work is involved. Since all variables will be
declared to be of the same type when the array is created, those of
different types should subsequently be changed using one or more
XPRBsetvartype commands. In such circumstances it may be simpler
to construct the model using a series of XPRBnewvar statements and
placing these variables in a C array.

Writing Matrix Files

Occasionally you will want to output your model as a matrix file for
independent input into a solver, or to pass to another person. BCL
provides the command XPRBexportprob for just such a purpose.

A full list of all the
variable types which
are available can be
found in the BCL
Reference Manual.
Xpress-MP Essentials Going Further with BCL71

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Exercise Alter the previous program to write an MPS file rather than
solving the problem.

A full program which achieves this is provided in Listing 4.17. A matrix
file arraymod.mat is produced, but otherwise the program runs
silently.

XPRBexportprob

This exports the problem as a matrix file in the two
industry standard formats. It takes two arguments after
the problem pointer:

• the first is the matrix output file format. This is one of
XPRB_MPS or XPRB_LP depending on whether an MPS
or LP format file is required;

• the second is the name of the output file without an
extension.

Listing 4.17 Writing an MPS matrix file

#include <stdio.h>
#include "xprb.h"

double FIRST[] = {3,2};
double SECOND[] = {1,3};
double PROFIT[] = {1,2};

int main(void)
{
 XPRBarrvar x;
 XPRBctr profit;
 XPRBprob prob;

 if(XPRBinit("")) return 1;
 prob = XPRBnewprob("arraymod");

 x = XPRBnewarrvar(prob,2,XPRB_PL,"x",0,200);
Xpress-MP EssentialsGoing Further with BCL 72

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

In contrast to MPS format, LP matrix files also contain information
about whether the objective function is to be maximized or
minimized. Unless this is specified, the problem is assumed to be a
minimization problem by default. To write an LP file for this problem,
an extra line should be added before the matrix file is exported:

XPRBsetsense(prob,XPRB_MAXIM);

This changes the sense of the problem to maximization.

Exercise Alter the model above to write an LP matrix file for the
problem. Using a text editor or similar, check that the sense has been
set correctly.

In this brief introduction to BCL, it is not possible to cover the full
range of possibilities offered and the above is intended just to provide
a flavor of the library. For further details you should consult the BCL
Reference Manual or the many examples contained on the Xpress-MP
CD-ROM. In the following sections we turn to describing the Xpress-
Optimizer Library, allowing direct access to the Optimizer from
applications. This may usefully be combined with BCL to provide
additional functionality for those needing to progressively develop
and alter models at the matrix level. Details of how the two can be
used together may be found in the section “Combining BCL with the
Optimizer Library” on page 95. You may also find it useful to consult
the rest of the section “Getting the Best out of the Xpress-MP
Libraries” on page 95.

 XPRBnewarrsum(prob,"First",x,FIRST,XPRB_L,400);
 XPRBnewarrsum(prob,"Second",x,SECOND,XPRB_L,200);
 profit=XPRBnewarrsum(prob,"Profit",x,PROFIT,
 XPRB_N,0);
 XPRBsetobj(prob,profit);

 XPRBexportprob(prob,XPRB_MPS,"arraymod");
 XPRBdelprob(prob);
 XPRBfree();
 return 0;
}

Listing 4.17 Writing an MPS matrix file
Xpress-MP Essentials Going Further with BCL73

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Working with the Xpress-Optimizer Library

The Xpress-Optimizer Library allows library users access to the full
power of the Optimizer from within their own applications. Providing
all the functionality enjoyed by Console users, the Optimizer library
augments this with a number of ‘advanced’ functions for matrix
manipulation and enhanced interaction with the solution process.
Additionally, the library provides users with a thread-safe Optimizer,
allowing simultaneous handling of a number of different problems,
limited only by your system resources and license details. In the same
manner as for the Mosel libraries and BCL, the Optimizer library
distinguishes between problems using a problem pointer which is
passed to each function that will operate on it. As with the other
libraries discussed above, there is no concept of an active problem
here.

Solving an LP Problem with the Optimizer Library

The Optimizer accepts matrix files in either MPS or LP format as valid
input. To attempt the exercises in this section you will need access to
a valid matrix file, such as you may have generated in the exercises
previously in this chapter, or obtained from Chapter 3, “Console
Xpress”. Throughout this section we will refer to the matrix file
simple.mat generated from the model in Listing 4.1 above.

The Optimizer library provides functions for initializing the library
prior to use and for freeing system resources at the end. Generally
these two functions, XPRSinit and XPRSfree, enclose all other
library commands and both must appear in any Optimizer program.
To load a matrix into the Optimizer, a problem pointer must first be
created for that problem which must then be passed to every function
concerned with manipulating it. It does this using XPRScreateprob.

XPRSinit

This initializes the Optimizer library prior to use. It takes a
single argument which is a pointer to where the password
file is located. If this is NULL, the standard installation
directories are searched.
Xpress-MP EssentialsWorking with the Xpress-Optimizer Library 74

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

To find a solution to the problem of Listing 4.1, the matrix file must be
input before the objective function can subsequently be maximized.
A full program solving this problem is given in Listing 4.18.

XPRScreateprob

This sets up a problem pointer for a particular problem. It
takes a single argument into which a problem pointer is to
be returned. This is then passed as the first argument to all
functions which operate on the problem.

XPRSdestroyprob

Removes the problem specified by a problem pointer.

XPRSfree

This releases any memory currently used by the Optimizer
and closes any open files.

Listing 4.18 Solving an LP problem with the Optimizer library

#include <stdio.h>
#include "xprs.h"

int main(void)
{
 XPRSprob prob;

 XPRSinit(NULL);
 XPRScreateprob(&prob);

 XPRSreadprob(prob,"simple","");
 XPRSmaxim(prob,"");
 XPRSwriteprtsol(prob);

 XPRSdestroyprob(prob);
 XPRSfree();
 return 0;
}

Xpress-MP Essentials Working with the Xpress-Optimizer Library75

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Exercise Type in the Optimizer program from Listing 4.18 and run it
to input the matrix file simple.mat, maximize its objective function
and output the solution using XPRSwriteprtsol.

Obtaining the Solution Using XPRSwriteprtsol

There are a number of methods for obtaining solution information
using the Optimizer library. We will meet others later, but for now
the simplest is to use the command XPRSwriteprtsol, which writes
a solution file suitable for sending to a line printer. This file can be
naturally split up into three sections as demonstrated in Listing 4.19.

The sections are perhaps most usefully considered in the order Section
1, Section 3, Section 2. Section 1 contains summary statistics about
the solution process. It gives the matrix (problem) name (simple) and
the objective function and right hand side names that have been used.
Following this are the number of rows and columns, the fact that it
was a maximization problem, that it took two iterations (steps) to
solve and that the best solution has a value of 171.428571.

The optimal values of the decision variables are given in Section 3, the
Columns Section. The Value column gives the optimal value of the
variable. Additional solution information such as the Input Cost and

XPRSreadprob

Reads a problem file in MPS or LP format. It takes three
arguments:

• the first is the problem pointer;
• the second is the filename of the problem, without its

extension;
• the third is a list of possible flags.

XPRSmaxim

Begins the search for a maximal solution to the problem.
It takes two arguments, the first of which is the problem
pointer and the second is a list of possible flags.

XPRSwriteprtsol

Outputs the solution to a file, problem_name.prt.

"Section 1…"

"Section 3…"
Xpress-MP EssentialsWorking with the Xpress-Optimizer Library 76

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Reduced Cost for each of the variables is also provided here. See
Chapter 7, ”Glossary of Terms” for details of these.

The final section to consider is Section 2, the Rows Section. This gives
a list of the various constraints and objective function of the problem,
along with the value of the "left hand side" of the expression. In
particular, the value of the objective function turns up here again.
Slack values and Dual values for the constraints can also be obtained
from here. See Chapter 7, ”Glossary of Terms” for details of these.

Exercise View the output file simple.prt which you have just
created and identify the various sections. Check your results for the
decision variables and objective function with those in the listing.

Listing 4.19 Output from the XPRSwriteprtsol command

Problem Statistics
Matrix simple (Section 1)
Objective *OBJ*

RHS *RHS*
Problem has 3 rows and 2 structural columns

Solution Statistics
Maximization performed
Optimal solution found after 2 iterations
Objective function value is 171.428571

Rows Section (Section 2)
 Number Row At Value Slack Value Dual Value RHS
 N 1 *OBJ* BS 171.428571 -171.428571 .000000 .000000
 L 2 second UL 200.000000 .000000 .571429 200.000000
 L 3 first UL 400.000000 .000000 .142857 400.000000

Columns Section (Section 3)
 Number Column At Value Input Cost Reduced Cost
 C 4 a BS 114.285714 1.000000 .000000
 C 5 b BS 28.571429 2.000000 .000000

"Section 2…"
Xpress-MP Essentials Working with the Xpress-Optimizer Library77

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Going Further with the Optimizer Library

Changing the Optimization Algorithm

The Optimizer solves LP problems by default using the dual simplex
algorithm. However, primal simplex and Newton barrier algorithms
are also supported and on certain problems changing the algorithm
may result in a considerable change in the time taken to solve a
problem. Choosing the ‘best’ algorithm to use in a given situation is
something of an art in itself, but often the best choice is evident by
experimenting with the different algorithms on problems which are
similar in nature to your own.

The simplest way to change the algorithm is by setting a flag which
can be passed to the optimization routines. These correspond to each
of the three algorithms discussed above:

Listing 4.20 demonstrates using the Newton barrier method for the
optimization.

Exercise Try solving the problem using each of the three algorithms.
For a problem as simple as this, there will be no noticeable difference
in solution times.

b use the Newton barrier algorithm;
d use the dual simplex algorithm;
p use the primal simplex algorithm.

Listing 4.20 Changing the optimization algorithm

XPRScreateprob(&prob);
XPRSreadprob(prob,"simple","");
XPRSmaxim(prob,"b");
XPRSwriteprtsol(prob);
XPRSdestroyprob(prob);
Xpress-MP EssentialsGoing Further with the Optimizer Library 78

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Integer Programming

For the simple problem considered above, the maximal value of the
objective function is obtained when the decision variables take values
of a = 114.3 and b = 28.6, to one decimal place. For some
problems, however, fractional solutions such as this may be
unacceptable and one or more of the decision variables may be
constrained to take only integer values. Listing 4.21 provides the
necessary changes to our model if we wish to seek only integer
solutions and export the problem as an MPS matrix file.

Exercise Use the Mosel libraries to compile, load and run the integer
problem of Listing 4.21, exporting an MPS matrix file. Load this into
the Optimizer using the library and solve the problem as before. What
is the value of the objective function now?

If you have run your program on this new model file, you will probably
have noticed that the solution returned remains unchanged, despite
our imposition of integer-valued variables. The reason for this is that
the search for optimal integer solutions is a two-stage process. For the
first of these, the LP relaxation must be solved to find an optimal

Listing 4.21 Introducing integer variables in our problem

model integral
 declarations
 a: mpvar
 b: mpvar
 end-declarations

 first:= 3*a + 2*b <= 400
 second:= a + 3*b <= 200
 profit:= a + 2*b

 a is_integer
 b is_integer

 exportprob(EP_MPS,"integral",profit)
end-model

The LP relaxation is
the previous prob-
lem, ignoring the
integrality of any
variables.
Xpress-MP Essentials Going Further with the Optimizer Library79

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

solution. For the second, a global search is carried out to find the best
integer solution, assuming one exists. The global search can be called
automatically following solution of the LP relaxation by passing the g
flag to XPRSmaxim and this is demonstrated in Listing 4.22 where we
again show only a small portion of the program, demonstrating the
additional command in bold face. If we run this and view the solution
produced, the decision variables should, finally, both take integer
values.

Exercise Alter your program to find integer solutions to the problem.
What is the largest value of the objective function in this case and
what values should the decision variables take to achieve it?

Exercise Alter the model again to keep one of the decision variables
integral but to remove this condition on the other. What is the
optimal value of the objective function now?

Presolve and Everything After

The Optimizer makes use of a number of procedures for simplifying
problems prior to optimization to make them easier to solve. This
collection of algorithms is known as presolve. During presolve,
redundant rows and columns in the matrix may be removed with the
result that the presolved matrix will often look very different from the
original problem. Whilst the XPRSwriteprtsol routine only outputs
information related to the original problem, other routines exist
which are affected by the matrix state and can return the presolved
solution if the matrix is still in its presolved form. Obtaining presolved
solutions rather than a solution to the original problem is a principle
source of confusion for many users. It is therefore important, when
accessing the matrix or a solution, to know what to expect.

Listing 4.22 Solving a MIP Problem with the Optimizer Library

XPRScreateprob(&prob);
XPRSreadprob(prob,"integral","");
XPRSmaxim(prob,"g");
XPRSwriteprtsol(prob);
XPRSdestroyprob(prob);

Calling XPRSmaxim
with the g flag is
equivalent to calling
XPRSmaxim with-
out any flag and
then calling the
XPRSglobal com-
mand directly after-
ward.
Xpress-MP EssentialsGoing Further with the Optimizer Library 80

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Presolve is called automatically by the solution routines, XPRSmaxim
and XPRSminim. Following the optimization of linear programming
problems, the matrix is also automatically postsolved, reinstating the
original matrix and returning a solution to the original problem.

If the matrix contains non-continuous variables (e.g. integer variables)
or special ordered sets, it is left in its presolved state following
XPRSmaxim (and XPRSminim), since a call to the global search is
expected to follow. In particular, if one of the solution routines is
called without the g flag, as we did above, then the matrix will remain
in its presolved form.

During the global search, integer solutions are postsolved and written
to the solution file as they are identified, making a solution to the
original problem available. However, postsolving of the entire matrix
is never carried out after a global search and the original matrix is not
restored. If further access to the matrix is subsequently required, it
must be reloaded, or copied before calling any of the solution
routines.

Note also that many of the advanced library functions will not work
with a presolved matrix and care should be taken to ensure that the
matrix will be in the correct form before calling them. An example of
this is the XPRSaddrows command which we will meet later.

Whilst we can only scratch the surface here, further details about
presolve may be found in the Optimizer Reference Manual. For
additional information, we recommend that you consult that manual.

Controls and Problem Attributes

There are a number of parameters to the Optimizer, whose values may
be altered by the user for a particular problem through the setting of
various controls. With some thought, these can be used to fine tune
the Optimizer’s performance on particularly difficult problems and
can result in significant savings in the solution time. Whilst we do not
encourage new users to change the majority of these from their
default values, there are a small number with which experimentation
may be useful. For the sake of these, we briefly mention how this may
be achieved.

"LP problems…"

"IP problems…"
Xpress-MP Essentials Going Further with the Optimizer Library81

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Additionally, the optimization process makes available a number of
attributes of the particular problem being solved which may be
retrieved in a similar way to the control values. A full list of all controls
which can be set and problem attributes which can be retrieved may
be found in the Optimizer Reference Manual

Both the controls and the problem attributes have a type which is one
of integer, double or character string and the way they are handled
and accessed depends on the type. For the moment we concentrate
solely on the controls. There are three library functions allowing the
values of controls to be obtained, namely XPRSgetintcontrol,
XPRSgetdblcontrol and XPRSgetstrcontrol. To access the value
of a given control for a particular problem, the correct function for its
type must be employed.

We have just seen that when XPRSmaxim is invoked the presolve
algorithms are automatically called to simplify the problem before the
solution algorithm begins. This default behavior is governed by the
control PRESOLVE, which is an integer describing whether or not
presolve should be used during optimization.

Exercise Retrieve the value of the control PRESOLVE to the integer
variable presolve using

XPRSgetintcontrol(prob,XPRS_PRESOLVE,&presolve);

and confirm that this corresponds to presolve being set on by default.

It should be noted that when controls are accessed from within the
Xpress-MP libraries, their names differ from those in Console Xpress in
that they are prefixed by XPRS_. This is an important point which is
easily forgotten since controls are usually described without this
prefix.

Turning Presolve On or Off

Set the control variable PRESOLVE to:

0 to call the solution algorithm without presolving;

1 to call presolve before the solution algorithm;
Xpress-MP EssentialsGoing Further with the Optimizer Library 82

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

To set new values to the controls, the functions XPRSsetintcontrol,
XPRSsetdblcontrol and XPRSsetstrcontrol should be used,
setting new values to integer, double and string controls respectively.

Exercise Use XPRSsetintcontrol(prob,XPRS_PRESOLVE,0); to
set the value of the control PRESOLVE to 0 in the previous program,
turning off presolve. This must be done before the call to XPRSmaxim
which is affected by the value of this variable. Run the program again
and view the output.

The final set of functions of this type allow access to various attributes
of the problem, set by the Optimizer during the solution process. The
XPRSgetintattrib, XPRSgetdblattrib and XPRSgetstrattrib
functions are equivalent to those for getting control values and are
used in the same way. An example of this may be given in relation to
the integer problem attribute LPSTATUS, whose value provides details
about whether the solution is optimal, infeasible, unbounded or
unfinished. Listing 4.23 shows how this may be used to good effect.

Although we do not discuss this further here, another example can be
found later when use of the Optimizer library in modeling is explored.

Listing 4.23 Checking the solution status

int lpstatus;
 …
XPRSmaxim(prob,"");

XPRSgetintattrib(prob,XPRS_LPSTATUS,&lpstatus);
if(lpstatus == XPRS_LP_OPTIMAL)
 XPRSwriteprtsol(prob);
else
 printf("Solution is not optimal\n");

"Problem
attributes…"

A full list of all the
possible values of
LPSTATUS may be
found with the
Problem Attributes
in the Optimizer
Reference Manual.
Xpress-MP Essentials Going Further with the Optimizer Library83

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Interacting with the Optimization Process

For large problems taking a long time to solve, it is often helpful to be
able to obtain more information from the Optimizer during the
optimization process. If a log file has been set up, it is possible to
consult this to determine how the solution is progressing, but this is
inconvenient and inflexible. For such situations, the Optimizer library
provides a set of ‘advanced’ functions, known as callbacks, allowing a
return to your program at various points during the optimization
process to run your own functions.

The majority of the callbacks are associated with various aspects of the
global search and are described in the Optimizer Reference Manual.
There are a few, however, which are called in more general situations,
perhaps the simplest of which is XPRSsetcbmessage. This sets a
function which is called every time a text line would be output by the
Optimizer and a (partial) example of usage may be found in Listing
4.24. This is a particularly simple example, merely writing each line of
standard output generated by the Optimizer to the screen, with a
suitable prefix.

Listing 4.24 Using callbacks with the Optimizer library

void XPRS_CC callback(XPRSprob prob, void *user,
const char *msg, int len, int msgtype)

{
 char *usermsg = (char *)user;
 if(msgtype>=0) printf("%s: %s\n",usermsg,msg);
}

int main(void)
{
 XPRSprob prob;
 char *usermsg = "simple.callback";

 XPRSinit(NULL);
 XPRScreateprob(&prob);
 XPRSsetcbmessage(prob,callback,usermsg);
 …
}

Log files may be set
in place using the
XPRSsetlogfile
command. See the
Optimizer Refer-
ence Manual for
details of this.

usermsg can be
NULL here if no
extra information is
to be passed into
the callback .
Xpress-MP EssentialsGoing Further with the Optimizer Library 84

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Exercise Add a callback to your program, which prints Optimizer
output to the screen, such as that in Listing 4.24.

The message type may be used to ‘screen’ the lines output by the
Optimizer, since the message type varies according to the message
level of the output in the following way:

Exercise Alter the callback function in your program to format
messages differently when printed, depending on their level.

The Optimizer Reference Manual contains a full list of all the callbacks
that may be set by library users. You may find it useful to familiarize
yourself with the possibilities that these provide and particularly so if
it is likely that you will be solving large integer problems on a regular
basis.

XPRSsetcbmessage

Sets up a function to be executed each time a line of
output is generated by the Optimizer. Its syntax is:

int XPRSsetcbmessage(XPRSprob prob,
void (*uopf)(XPRSprob this_prob,
void *this_user, const char *this_msg,
int this_len, int this_msgtype),
void *user);

where this_user is a user-definable pointer allowing
your own data to be passed into the callback function,
this_msg is the character string output, this_len is its
length and this_msgtype is an integer defining the
message level.

Message Type Message Level

1 normal messages (informational)

2 normal messages (debugging)

3 warning messages

4 error messages
Xpress-MP Essentials Going Further with the Optimizer Library85

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Loading Models from Memory

The Optimizer library is the largest Xpress-MP library, with functions
which fall roughly into two categories: those ‘basic’ functions which,
for the most part, are the counterparts of Console Xpress commands,
and more advanced commands which are available only to library
users.

The advanced library functions contain all the tools necessary to load
problems directly into the Optimizer from memory-resident arrays
and to manipulate them once there. In this section we demonstrate
how our simple problem (Listing 4.1) may be entered directly using
these functions and show how the Optimizer and the library program
can interact further.

Loading LP Problems with the Optimizer Library

In modeling parlance we always speak of constraints and variables
when describing problems, but the equivalent structures within the
Optimizer are the rows and columns of the matrix. You will already
have seen this in the file produced by XPRSwriteprtsol earlier.
When a model is exported by Mosel, the problem description is
converted into a matrix format that can be read into the Optimizer for
solving. In this section we will explore how you can create this matrix
yourself directly with the Optimizer library. We do this using the
‘advanced’ function XPRSloadlp.

Since XPRSloadlp takes so many arguments, it is perhaps more
sensible to describe its use by way of an example. You may find it
useful to have a finger in page 49 and look at Listing 4.1 alongside
this.

XPRSloadlp

Loads an LP problem into the Optimizer data structures. A
full list of all its arguments may be found in the Optimizer
Reference Manual.
Xpress-MP EssentialsLoading Models from Memory 86

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

In Listing 4.25 the various arguments to XPRSloadlp are declared and
assigned values for the same simple problem discussed earlier.

• The first of these specifies a name for the problem, which this
time we have chosen to be ‘advanced’. As previously, the
problem name is the basis for any files that are created, and
must be specified.

• Following this we define the number of columns (variables) in
the matrix to be 2 (a and b) and the number of rows
(constraints, not including the objective function) to be 2 also.

The next six arrays specify details of the constraints in the model for
constructing the matrix rows.

• To begin with, we ignore the objective function as a row and
consider only the ‘true’ constraints. The first array, qrtype,
specifies the type of each constraint, which were both in our
model. This is passed to XPRSloadlp using an ‘L’ for each row.

• Following this, the right hand sides of the constraints are
defined, one row at a time. The first value comes from the
constraint , while the second comes from

.

Listing 4.25 Declaring arguments for XPRSloadlp

 char probname[] = "advanced";
 int ncol = 2;
 int nrow = 2;

 char qrtype[] = {’L’,’L’};
 double rhs[] = {400.0, 200.0};
 int mstart[] = {0, 2, 4};
 int mrwind[] = {0, 1, 0, 1};
 double dmatval[] = {3.0, 1.0, 2.0, 3.0};
 double objcoefs[] = {1.0, 2.0};

 double dlb[] = {0.0, 0.0};
 double dub[] = {200.0, 200.0};

≤

3a 2b+ 400≤
a 3b+ 200≤
Xpress-MP Essentials Loading Models from Memory87

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

• The following two arrays describe the offsets and starting
points for elements in the matrix that will shortly be defined.
These will be described in detail in the paragraphs below.

• The array dmatval then contains the actual coefficients from
the constraints which will become the matrix elements. This is
a one-dimensional array running vertically, taking nonzero
coefficients from each constraint, one variable at a time.
Effectively we specify the matrix column-wise from the left.

• Finally the coefficients of the objective function are specified.

The last two lines provide upper and lower bounds on the variables in
the model.

Perhaps the most interesting elements of this listing are the arrays
mstart and mrwind. Defining a matrix in terms of the offsets and
starting points for its entries provides an extremely efficient method
of describing problems which have a large number of zero entries.
Since the simple example that we have been considering up to this
point does not contain any zeros, their use is perhaps not as evident
as it might be. By way of an aside, therefore, consider briefly the
following problem:

The matrix in Problem 1 would have 20 entries, with ten of them zero.
In common with this model, large problems are usually sparse and
XPRSloadlp is geared towards this. Requiring problems to be
specified in a sparse format is considerably more efficient and an
example of how this might be done is provided in Listing 4.26.

Problem 1

Maximize: 0.1x1 + 0.2x2 + x3

Subject to: x1 + 2x2 = 0
 x3 + x4 - x5 = 0
 x4 - 0.27x5 >= 0
3x1 + x4 - 0.4 x5 <= 0

Listing 4.26 Entering sparse matrix data

int mstart[] = {0, 2,3,4, 7, 10};
int mrwind[] = {0,3,0,1,1,2,3, 1, 2, 3};
double dmatval[] = {1,3,2,1,1,1,1,-1,-0.27,-0.4};

"Offsets and
start points…"

A matrix with a
large number of
zero entries is said
to be sparse.
Xpress-MP EssentialsLoading Models from Memory 88

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

The entries in the matrix mstart tell the Optimizer that the data in
dmatval may be divided up into columns in the matrix according to:

dmatval[0], dmatval[1] in column 0;
dmatval[2] in column 1;
dmatval[3] in column 2;
dmatval[4], dmatval[5], dmatval[6] in column 3;
dmatval[7], dmatval[8], dmatval[9] in column 4.

Thus, the entries in mstart define the starting points (and end points)
for the columns within the stream of data provided in dmatval. The
mstart array thus contains one more entry than the number of
columns, as data for column i begins at mstart[i] and finishes at
mstart[i+1]-1. With the columns defined, information contained
in mrwind places the entries for each column into their correct rows,
with:

dmatval[0] in row 0; dmatval[1] in row 3;
dmatval[2] in row 0;
dmatval[3] in row 1;
dmatval[4] in row 1; dmatval[5] in row 2; dmatval[6] in row 3;
dmatval[7] in row 1; dmatval[8] in row 2; dmatval[9] in row 3.

Once the positions have been specified, the elements themselves are
determined from the data in dmatval.

Returning to our problem, ‘advanced’, Listing 4.25 places the first two
elements of dmatval in rows 0 and 1 of column 0 and the third and
fourth elements of dmatval in rows 0 and 1 of column 1 in the matrix.

Using XPRSaddnames, names can also be added to the variables
within the matrix once it has been defined. In Listing 4.27 we show
this, along with the definition of the matrix using XPRSloadlp. The
variable names are stored in the character array colnames as a null-
terminated list (hence the \0 character between the two).

Don’t forget, all row
and column indices
run from 0 in C!

"Anyway…"
Xpress-MP Essentials Loading Models from Memory89

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Obtaining a Solution to the Problem

With the problem matrix defined, the objective function can now be
maximized as before using XPRSmaxim (see Listing 4.18). However,
while previously we have always output the solution to file for
viewing or printing, the Optimizer library provides another function,
XPRSgetsol, which enables the solution to be accessed directly from
your program.

Listing 4.27 Loading the problem and adding variable names

XPRSprob prob;
char colnames[] = "a\0b";
 ...
XPRSinit(NULL);
XPRScreateprob(&prob);
XPRSloadlp(prob, probname, ncol, nrow, qrtype, rhs,

NULL, objcoefs, mstart, NULL, mrwind, dmatval,
dlb, dub);

 ...
XPRSaddnames(prob,2,colnames,0,ncol-1);

XPRSaddnames

Adds row or column names to the matrix. It takes five
arguments:

• the first argument is the problem;
• the second can take values of either 1 or 2 depending

on whether the names are for rows or columns;
• the third is a null-terminated array of names;
• the final two arguments specify the start and end rows

(or columns) in the matrix for assigning the names.

XPRSgetsol

Retrieves a solution to the problem. It takes four
arguments after the problem, any of which may be NULL
depending on what information about the solution is
required.

The two NULLs here
relate to row range
values and number
of nonzeros in each
column. Because of
the way we have
specified the prob-
lem, these are not
needed. See the
Optimizer Reference
Manual for details.
Xpress-MP EssentialsLoading Models from Memory 90

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

In Listing 4.28 we show how this can be employed to obtain the
optimal values of the various variables and output them to the screen.

Perhaps the only part of the solution that XPRSgetsol cannot supply
us with is the optimal value of the objective function. Indeed, there
are no advanced library functions that return this value. Rather it is
stored in the problem attribute LPOBJVAL which must be accessed in
the same manner as for the problem status previously. The code for
doing this is given in Listing 4.29.

Exercise Putting together the ideas of Listing 4.25 – Listing 4.29, write
an Optimizer program which directly loads and solves the problem of
Listing 4.1 and outputs the solution to the screen. Check that the
values obtained agree with those from previous exercises.

Listing 4.28 Obtaining and displaying variable values

#include <stdlib.h>

double *vars;
 ...
vars = malloc(ncol*sizeof(double));
XPRSgetsol(prob,vars,NULL,NULL,NULL);
printf("a = %2.1f\nb = %2.1f\n", vars[0], vars[1]);

Listing 4.29 Obtaining and displaying the objective value

double lpobjval;
 ...
XPRSgetdblattrib(prob, XPRS_LPOBJVAL, &lpobjval);
printf("The objective value is %2.1f\n", lpobjval);
Xpress-MP Essentials Loading Models from Memory91

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Altering the Problem Matrix

The Optimizer library also provides the possibility of altering our
matrix once it has been loaded. As an example, we will briefly discuss
how an extra constraint can be added to the problem using
XPRSaddrows. Suppose that we wish to add the extra constraint,

 to our problem. In Listing 4.30 we show the extra lines
necessary to achieve this. Much as for XPRSloadlp, we specify
coefficients of the variables in the linear constraint expression, with
aclind specifying the column indices for the elements of amatval
and astart specifying the offsets of the start of the elements for the
new row. In this case a new row will be added with amatval[0] (in
column 0) at element 0 in the matrix and amatval[1] (in column 1)
at element 3, specifying the nonzeros in the matrix columnwise. The
second and third arguments of XPRSaddrows are the number of new
rows and the number of nonzeros in the added rows.

Exercise Alter the previous program to add a new row to the problem
before solving it. Run the program and the new optimal value of the
objective function should have reduced to 169.2. What values of the
decision variables are necessary to achieve this?

XPRSaddrows

Adds extra constraint rows to the matrix in the Optimizer
data structures.

Listing 4.30 Adding an extra row in the matrix

char atype[] = {’L’};
double arhs[] = {800.0};
int astart[] = {0,2};
int aclind[] = {0,1};
double amatval[] = {6.0,5.0};
 ...
XPRSaddrows(prob,1,2,atype,arhs,NULL,astart,aclind,

amatval);

Compare this with
the ‘altered’ model
of Listing 4.5 earlier.

6a 5b+ 800≤
Xpress-MP EssentialsLoading Models from Memory 92

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Loading MIP Problems with the Optimizer Library

Using the Mosel model programming language, we saw earlier that
changing the problem to insist on integer-valued decision variables
was merely a case of adding two extra lines to the model program file.
Similarly, we can specify that the decision variables should be integral
using the Optimizer library, although the problem can no longer be
loaded using XPRSloadlp — we must instead use the function,
XPRSloadglobal.

The first 14 arguments of XPRSloadglobal are exactly the same as
those for XPRSloadlp, so need no further discussion. Of the
remaining ones, only a few warrant a mention here. We declare and
set them in Listing 4.31.

• Of the new arguments, ngents states the number of global
entities in the problem, which in our case is two — the two
variables should be integers.

XPRSloadglobal

Loads a problem with global entities into the Optimizer
data structures. The first 14 of its arguments are identical
to those of XPRSloadlp. For a list of the remaining ones,
consult the Optimizer Reference Manual.

Listing 4.31 Loading integer problems using the libraries

int ngents = 2;
int nsets = 0;
char qgtype[] = {’I’,’I’};
int mgcols[] = {0,1};
 …
XPRSloadglobal(prob, probname, ncol, nrow, qrtype,

rhs, NULL, objcoefs, mstart, NULL, mrwind,
dmatval, dlb, dub, ngents, nsets, qgtype, mgcols,
NULL, NULL, NULL, NULL, NULL);

‘Global entities’ is
used as an umbrella
term in Xpress-MP
to describe any
binary, integer, or
other non-continu-
ous variables and
special ordered sets.

For details of the
extra arguments for
problems with SOSs,
see the Optimizer
Reference Manual.
Xpress-MP Essentials Loading Models from Memory93

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

• The integer nsets states the number of Special Ordered Sets
(SOSs) in the problem. We use none here.

• The array qgtype allows us to set both variables to be integral.
• mgcols provides the indices of the variables which should be

set to these types.

The final five arguments are all concerned with SOSs. Since we do not
have any of these, they have all been set to NULL.

Once a MIP problem has been loaded with XPRSloadglobal, you can
maximize it using XPRSmaxim (with the "g" flag specified) as
described earlier (see Listing 4.22).

It should be noted that for mixed integer problems such as this, the
problem attribute LPOBJVAL should not be used to return the optimal
value of the objective function. Instead the attribute MIPOBJVAL
must be consulted. During the global (MIP) search, a number of LP
problems will be solved, each one refining the set of possible solutions
by placing additional bounds on the various global variables. After
the global search has completed, the attribute LPOBJVAL will hold the
optimal value of the objective function for the last LP problem that
was solved. However, this need not be the global maximum (over all
the LP problems which had to be solved), which is instead stored in
MIPOBJVAL. For interested users, further details of this may be found
in the Optimizer Reference Manual.

Exercise Alter the original problem (the one with only two
constraints) to load the integer problem. Solve this and confirm that
the solution agrees with the last integer problem we solved.

Exercise Change this to load a new global problem with the
additional constraint . This should have an optimal
solution when a is 107 and b is 31. Solve it and check this.

Much more information on modeling with this library can be found in
the Optimizer Reference Manual, where all the functions which are
available for changing and solving loaded problems are documented.
Hopefully we have been able at least to give the flavor of this method
of modeling, although the treatment has obviously not been
exhaustive. We end this chapter now with some general comments

Variable indices are
the position of each
in the variable array,
counting from 0.

6a 5b+ 800≤
Xpress-MP EssentialsLoading Models from Memory 94

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

which apply to users of more than one of the Xpress-MP libraries
before describing the use of the Xpress-MP Libraries with other
languages.

Getting the Best out of the Xpress-MP Libraries

Error Checking

Almost all library functions return an integer value on exit which is
zero if the function call completes successfully and nonzero otherwise.
By catching the return values of functions, your program can respond
early to possible errors and by checking these values it becomes easier
to diagnose problems. Whilst we have not used error checking in any
of the previous listings in this chapter, this has been done purely for
clarity and we recommend that users employ error checking within all
their programs, regardless of the library used.

An example of basic error checking using the Optimizer library is given
in Listing 4.32. This example is particularly simple, merely printing a
message and exiting when an error occurs. In practice, of course, more
complicated procedures for dealing with errors within your code are
possible and we leave these for you to experiment with.

Exercise Alter one of the programs that you have written in this
chapter to include error checking.

Combining BCL with the Optimizer Library

In certain circumstances, the basic BCL functions will not be sufficient
to perform all the tasks within the Optimizer that a user may require.
The solution is to build the problem and load it into the Optimizer
using BCL and then call on the Optimizer functions afterward. This
enables you to use the full capabilities of the Optimizer library on the
problem, but with the drawback that the problem will no longer be
accessible by BCL after this point. If you require access by BCL
Xpress-MP Essentials Getting the Best out of the Xpress-MP Libraries95

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

throughout the solution process, you will need to perform the
optimization tasks using the BCL solution functions, as above.

Listing 4.32 Basic error checking

#include <stdio.h>
#include <stdlib.h>
#include "xprs.h"

void error(XPRSprob my_prob, const char *function)
{
 char errmsg[256];
 XPRSgetlasterror(my_prob,errmsg);
 printf("%s did not execute correctly:\n\t%s\n",

function, errmsg);
 if(my_prob != NULL) XPRSdestroyprob(my_prob);
 XPRSfree();
 exit(1);
}

int main(void)
{
 XPRSprob prob=NULL;

 if(XPRSinit(NULL))
 error(prob,"XPRSinit");

 if(XPRScreateprob(&prob))
 error(prob,"XPRScreateprob");
 if(XPRSreadprob(prob,"simple",""))
 error(prob,"XPRSreadprob");
 if(XPRSmaxim(prob,""))
 error(prob,"XPRSmaxim");
 if(XPRSwriteprtsol(prob))
 error(prob,"XPRSwriteprtsol");
 if(XPRSdestroyprob(prob))
 error(prob,"XPRSdestroyprob");

 XPRSfree();
 return 0;
}

Xpress-MP EssentialsGetting the Best out of the Xpress-MP Libraries 96

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Combining BCL with the Optimizer library can be achieved on two
levels. In the simplest case, BCL can be used to write an MPS file (as in
Listing 4.16) which can then be read into the Optimizer using library
functions. However, the generation and reading of ASCII files involves
disk access, which can take a significant amount of time. For this
reason, BCL can also be used to pass the problem directly to the
Optimizer. There are some complications involved with combining
the libraries in this manner, due mainly to the different problem
pointers used by BCL and the Optimizer library. Consequently, any
problem used must initially be created by BCL and then subsequently
passed to the Optimizer library. Listing 4.33 demonstrates how this
may be achieved.

Listing 4.33 Combining BCL and the Optimizer library

#include <stdio.h>
#include "xprb.h"
#include "xprs.h"

double FIRST[] = {3,2};
double SECOND[] = {1,3};
double PROFIT[] = {1,2};

int main(void)
{
 XPRSprob opt; /* Optimizer problem pointer */
 XPRBprob bcl; /* BCL problem pointer */
 XPRBarrvar x;
 XPRBctr profit;

 bcl = XPRBnewprob("combined");

 x = XPRBnewarrvar(bcl,2,XPRB_PL,"x",0,200);

 XPRBnewarrsum(bcl,"First",x,FIRST,XPRB_L,400);
 XPRBnewarrsum(bcl,"Second",x,SECOND,XPRB_L,200);
 profit=XPRBnewarrsum(bcl,"Profit",x,PROFIT,

XPRB_N,0);
 XPRBsetobj(bcl,profit);
Xpress-MP Essentials Getting the Best out of the Xpress-MP Libraries97

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

In this example, the BCL XPRBnewprob function initializes both BCL
and the Optimizer at the same time, removing the need for a separate
call to XPRSinit. The output from this function is a BCL problem
pointer which is used by all BCL functions operating on the problem.
The matrix is then loaded into the Optimizer using XPRBloadmat,
after which an Optimizer problem pointer is needed. This is obtained
by BCL using the function XPRBgetXPRSprob and thereafter the
Optimizer functions can be used in exactly the same manner as
previously.

Exercise Build the example of Listing 4.33 and try running it. Notice
that no MPS file is created and the libraries work together by passing
the completed matrix from BCL directly to the Optimizer.

 /* load the matrix into the Optimizer */
 XPRBloadmat(bcl);
 /* obtain the problem pointer for the Optimizer */
 opt = (XPRSprob)XPRBgetXPRSprob(bcl);

 XPRSmaxim(opt,"");
 XPRSwriteprtsol(opt);

 /* tidy up using the BCL function */
 XPRBdelprob(bcl);
 XPRBfree();
 return 0;
}

XPRBloadmat

Loads a matrix into the Optimizer for Optimizer functions
to operate on.

XPRBgetXPRSprob

Returns an Optimizer problem pointer for the problem
just loaded into the Optimizer by BCL.

Listing 4.33 Combining BCL and the Optimizer library
Xpress-MP EssentialsGetting the Best out of the Xpress-MP Libraries 98

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

It is worth remarking once again that after Optimizer functions have
been called, it will no longer be possible to access the problem from
BCL. If this is required, the BCL solution routines should be used in
preference to the Optimizer ones.

Using Visual Basic with the Xpress-MP Libraries

The Xpress-Optimizer library can be used with Visual Basic, either the
stand-alone product, or Visual Basic for Applications (VBA) as
implemented in Excel, Access etc. We shall simply use ‘VB’ here to
refer to both of these. If you do not use VB you can safely skip this
section.

The Xpress-MP library functions can be imported into your VB project
using the external function declarations defined in the VB module
xprs.bas, included as part of the Xpress-MP Libraries distribution.
The Xpress-MP library functions themselves take the same names as
the C functions, allowing users to easily translate between the
prototypes in the Reference Manuals and their VB equivalents. They
all produce a Long return value. An example of this is given in Listing
4.34 which is a VB version of our previous problem, Listing 4.18.

Listing 4.34 Using the Xpress-MP libraries in VB

Public Sub main()
 Dim nReturn As Long

 nReturn = XPRSinit("")
 nReturn = XPRScreateprob(prob);
 nReturn = XPRSreadprob(prob,"simple","")
 nReturn = XPRSmaxim(prob,"")
 nReturn = XPRSwriteprtsol(prob)
 nReturn = XPRSdestroyprob(prob)
 nReturn = XPRSfree()
End Sub

A copy of this mod-
ule should be added
to your project since
you may eventually
customize it when
defining function
prototypes that use
NULL arguments.
Xpress-MP Essentials Using Visual Basic with the Xpress-MP Libraries99

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Over the remainder of this section, we will briefly describe some of the
differences between the C and VB interfaces and mention some of the
pitfalls for users of the libraries in this environment. The approach
taken will be summary in nature, so users may find it useful to consult
the Optimizer Reference Manual alongside this.

Included Files

Part of the Xpress-MP distribution, the file modbyte.bas contains a
number of useful function definitions which we will use in this chapter
and we shall assume that it is included in the source of any program
described in the listings. In particular, the function ByteConversion
is defined here and consequently a number of the following listings
may not work without this. It may be found in the directory
\examples\optimizer\vb on the CD-ROM.

Principal Structures

Argument Types: VB parameters passed to the routines are related
to the C parameters in the following way:

Constants: The C constants become VB global constants with the
same names, for example:

Global Const XPRS_PLUSINFINITY = 1E+20
Global Const XPRS_LPLOG = 9

Numerical Arrays: A number of routines in the Optimizer library
require numerical arrays to be passed as one of their arguments. An
example is given by the routine XPRSgetobj, whose second argument

C argument type

int x
int *x
double x
double *x
char *x

VB argument type

ByVal x As Long
x As Long
ByVal x As Double
x As Double
ByVal x As String

or x As Byte

We recommend that
you check the
return values of all
library functions,
although for clarity
we have not done
so here. See “Error
Checking” on page
95 for details.
Xpress-MP EssentialsUsing Visual Basic with the Xpress-MP Libraries 100

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

is a double precision array. An example passing this to the Optimizer
from VB is given in Listing 4.35. The important thing to note is that
only the first element of the array is passed and not the array itself.
This is the case for all numerical arrays passed between Xpress-MP and
VB.

Character Arrays: It is often necessary to pass character arrays to
various library subroutines. In VB, the character array is passed as a
Byte variable type, for example in the definition of XPRSchgbounds:

Declare Function XPRSchgbounds Lib "XPRS.DLL" _
(…, qbtype As Byte,…) As Long

To use this, the byte array must be initialized in your VB code using the
Asc function as in Listing 4.36. This initializes the qbtype array to
"LU" ready to be passed to the XPRSchgbounds routine.

Some Optimizer library routines require the user to pass character
arrays containing multiple strings. This should also be done using the
Byte data type. To separate each of the strings it is necessary to use
the C string terminator (a byte value of 0) and this requires some
conversion to be done in VB. To make this conversion easy for users
of Xpress-MP, the file modbyte.bas has been included in the VB
examples supplied with the Xpress-MP libraries. This module contains

Listing 4.35 Passing numerical arrays

Dim gpObjCoef(2) As Double
Dim nReturn As Long
 …
nReturn = XPRSgetobj(prob,gpObjCoef(0),0,2)

Listing 4.36 Initializing byte arrays in VB

Dim qbtype(1) As Byte
 …
qbtype(0) = Asc("L")
qbtype(1) = Asc("U")

"Passing
character
arrays…"
Xpress-MP Essentials Using Visual Basic with the Xpress-MP Libraries101

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

the ByteConversion function which takes a VB array of strings and
returns a byte array that can be passed to Xpress-MP routines. Listing
4.37 shows how this may be used.

Some routines in the Optimizer library return character arrays to VB in
the form of Byte arrays. These byte arrays can be translated to strings
for easier manipulation in VB. For example, to convert a three
element byte array to a three character string, the code in Listing 4.38
can be used.

Other routines in the Optimizer library return arrays of strings to VB
which must be converted from Byte to String to be useful. For
example, the XPRSgetnames routine has a second argument which is
a byte array, receiving row or column names from the Optimizer. This
can be easily translated to an array of strings using the code in Listing
4.39.

NULL Arguments: Certain routines can be called from C with null
arguments, meaning that the argument is to be ignored. To do the
equivalent of passing a null argument in VB, a compatible data
structure that might be used is the vbNullString constant, which is

Listing 4.37 Using the ByteConversion function

Dim sRowName(3) As String
Dim bRowName() As Byte

sRowName(0) = "c1": sRowName(1) = "c2"
sRowName(2) = "c3": sRowName(3) = "c4"

’ Transform the row names in bytes
bRowName = ByteConversion(sRowName,4)

Listing 4.38 Converting a byte array to a character string

For i = 0 To 2
 sRowType = sRowType + Chr(qrtype(i))
Next i

"Returning
character
arrays…"

"Converting
arrays from Byte
to String…"
Xpress-MP EssentialsUsing Visual Basic with the Xpress-MP Libraries 102

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

of type String. To use this, the function prototype in the xprs.bas
must often be changed and alternative prototypes may be declared
for each of the required configurations of null arguments in the
function argument list. As an example, suppose we wish to do the
equivalent of the C code:

nReturn = XPRSgetsol(prob,x,NULL,NULL,NULL);

where the last three quantities in the argument list are not required.
In VB, the XPRSgetsol function prototype in the xprs.bas file is
declared as:

Declare Function XPRSgetsol Lib "XPRS.DLL" _
(ByVal XPRSprob As Long,x As Double, _
slack As Double,dual As Double,dj As Double) _
As Long

The customized definition of XPRSgetsol which now allows for the
use of vbNullString with the final three arguments is then:

Listing 4.39 Translating a byte array to a string array in VB

Dim nReturn As Long
Dim nmLen As Long
Dim i, j As Long
Dim nRow As Long
Dim bV() As Byte
Dim sV() As String

nReturn = XPRSgetintcontrol(prob, _
XPRS_MPSNAMELENGTH, nmLen)

nReturn = XPRSgetintattrib(prob, XPRS_ROWS, nRow)

ReDim bV(nmLen * nRow + nRow - 1)
ReDim sV(nRow - 1)

nReturn = XPRSgetnames(prob, 2, bV(0), 0, nRow - 1)
For i = 0 To nRow - 1
 For j = 0 To nmLen - 1
 sV(i) = sV(i) + Chr(bV(i * (nmLen + 1) + j))
 Next j
Next i
Xpress-MP Essentials Using Visual Basic with the Xpress-MP Libraries103

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Declare Function XPRSgetsolx Lib "XPRS.DLL" _
Alias "XPRSgetsol" (ByVal XPRSprob As Long, _
x As Double, ByVal slack As String, _
ByVal dual As String, ByVal dj As String) _
As Long

The new function with a modified argument specification may
subsequently be used as in Listing 4.40.

Note that the prototype XPRSgetsolx and some other useful
prototypes for the XPRSgetsol routine are declared in xprs.bas.
You may find it easier to add your customized prototypes into a
central xprs.bas file as you need them.

Using Callbacks in Visual Basic

Optimizer callbacks can be used in Visual Basic by declaring a function
or subroutine with the correct parameters and passing its address to
the appropriate XPRSsetcb routine. This may be obtained using the
AddressOf operator. However, since the callbacks also allow user-
defined objects to be passed into the callback function as the final
argument, often a new prototype for the callback must be defined.
An example of this was seen above, where the XPRSgetsol function
prototype had to be altered to accept vbNullString as an argument.
An example in this context is given in Listing 4.41.

In this example, two strings and two integers are to be passed into the
callback, to which end an object, MyInfo, is defined containing such
data. Following this, the callback function XPRSsetcblplog has a

Listing 4.40 Using null arguments in VB

Dim x() As Double
Dim cols As Long

nReturn = XPRSgetintattrib(prob,XPRS_COLS,cols)
ReDim x(cols-1)
Call XPRSgetsol(prob, x(0), vbNullString, _

vbNullString, vbNullString)
Xpress-MP EssentialsUsing Visual Basic with the Xpress-MP Libraries 104

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

new prototype defined to accept data of type MyInfo as its second
argument. When the callback is set up, a reference to the object mi1
is passed into the function.

This provides just one example of the use of callbacks under Visual
Basic. However, several others may be found on the Xpress-MP CD-
ROM.

Listing 4.41 Using callbacks in Visual Basic

Public Type MyInfo
 int1 As Long
 int2 As Long
 var1 As Variant
 var2 As Variant
End Type
 …

Declare Function XPRSsetcblplog Lib "XPRS.DLL" _
(ByVal XPRSprob As Long, _
ByVal Address As Long, _
ByRef p As MyInfo) As Long

 …

Public Function lplog(ByVal prob As Long, _
ByRef mi As MyInfo) As Long

 …
End Function
 …
mi1.var1 = "The first string"
mi1.var2 = "The second string"
mi1.int1 = 1234
mi1.int2 = 5678
nReturn = XPRSsetcblplog(prob, AddressOf lplog, mi1)
Xpress-MP Essentials Using Visual Basic with the Xpress-MP Libraries105

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Using Java with the Xpress-MP Libraries

The BCL and Optimizer libraries may also be used with Java, requiring
a recent Java Virtual Machine (JVM) supporting the standard Java
Native Interface. Microsoft JVMs are non-standard and are not
supported.

The classes of the Java libraries are contained in the package:

com.dashoptimization.*;

It is recommended that this package be imported in the Java source
files which use the Xpress-MP Libraries. The entry point to BCL is the
class XPRBprob found in this package; for the Optimizer, it is the class
XPRSprob.

The Java Builder Component Library (BCL)

The Java interface of BCL provides the full functionality of the C
version except for the data input, output and error handling, where
the standard Java functions should be used. The modeling entities,
such as variables, constraints and problems are all converted into
classes, and their associated functions into methods of the
corresponding class in Java. All such classes (for example XPRBprob,
XPRBvar, XPRBctr, XPRBsos, XPRBindexSet, XPRBbasis) take the
same name, with the exception of XPRBindexSet, where the Java
capitalization convention has been employed. Full details of the Java
interface can be found in the BCL Reference Manual and the JavaDoc
documentation on the CD-ROM.

An example of use is given in Listing 4.42, which is a Java version of
the example used throughout the chapter. Several features of this
example are worthy of note. The Java interface makes use of an XPRB
class containing methods relating to the initialization and general
status of the software (including init and free) and the definition
of all parameters. In practice, this means that any parameter with the
prefix XPRB_ in standard BCL must be referred to as a constant of the
class XPRB in Java. For example, XPRB_BV in standard BCL becomes
XPRB.BV here.
Xpress-MP EssentialsUsing Java with the Xpress-MP Libraries 106

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

In Java it is not possible to overload the algebraic operators for the
definition of constraints as it is in C++. Instead, a number of classes
have been added to help in this process. For example, linear
expressions (class XPRBlinExp) are required in the definition of
constraints and Special Ordered Sets; quadratic expressions (class
XPRBquadExp) are used to define quadratic objective functions; linear
relations (class XPRBlinRel) may be used as an intermediary in the
definition of constraints. Further, a set of simple methods, such as add
or eql, are provided which may be overloaded to accept various types
and numbers of parameters.

Listing 4.42 Using BCL in Java

import com.dashoptimization.*;
public class simple
{
 static XPRBprob p;
 public static void main(String[] args)
 {

 XPRBvar a;
 XPRBvar b;

 XPRB.init();
 p = new XPRBprob("simple");

 a = p.newVar("a",XPRB.PL,0,200);
 b = p.newVar("b",XPRB.PL,0,200);

 p.newCtr("First",a.mul(3).add(b.mul(2)).lEql(400));
 p.newCtr("Second",a.add(b.mul(3)).lEql(200));
 p.setObj("Profit",a.add(b.mul(2)));

 p.maxim("");

 System.out.println("Profit: "+p.getObjVal());
 System.out.println(" a = "+a.getSol());
 System.out.println(" b = "+b.getSol());

 XPRB.free();
 }
}

Xpress-MP Essentials Using Java with the Xpress-MP Libraries107

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

The method isValid is a useful addition to BCL which should be used
in conjunction with methods getVarByName, getCtrByName etc. and
may require some explanation. These methods always return an
object of the desired type, unlike the corresponding functions in
standard BCL, which return a NULL pointer if the object was not
found. Only with the method isValid is it possible to test whether
the object is a valid object, i.e. whether it is contained in a problem
definition. The status of all such objects should be checked in this way
before use.

For the remainder of this section differences between the C and Java
interfaces will be discussed in the context of the Optimizer library.
However, the majority of the issues discussed later in the “Principal
Structures” section are relevant to both libraries and BCL users should
find little difficulty in applying the points raised there.

The Java Optimizer Library

Most of the routines (methods) described in the Optimizer Reference
Manual are now member functions of the XPRSprob class. The
XPRSprob member functions essentially take their names from their C
counterparts, albeit dropping their XPRS prefix and employing the
Java capitalization convention, allowing users to easily translate
between the C prototypes and their Java equivalents. There are a few
significant variations, however, which we discuss in these pages. For
more details of the Java interface, see the JavaDoc documentation on
the CD-ROM.

An example of use is given in Listing 4.43 which is again a Java version
of the example used throughout the chapter.

Listing 4.43 Using the Optimizer library in Java

import com.dashoptimization.*;
import java.io.*;

public class simple
{
 public static void main(String[] args)
 {
Xpress-MP EssentialsUsing Java with the Xpress-MP Libraries 108

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Noteworthy in this example, the Java interface makes use of an XPRS
class, which contains static members only. These include constant,
control and attribute names as well as the two methods init and
free. The function init is overloaded, so no null or null string
argument is required when standard paths are to be checked for
license details. init throws a standard exception, rather than an
XPRSprobException, whilst free does not throw an exception. See
the section “Controls and Problem Attributes” on page 111 for
examples of use of the control and problem attribute names.

The Java interface contains no equivalent of the C Optimizer functions
XPRScreateprob and XPRSdestroyprob. The creation and
destruction of problem objects is handled in the constructor and
finalize methods of XPRSprob.

 try
 {
 XPRS.init();
 }
 catch (Exception e)
 {
 System.out.println("Cannot initialize");
 }

 try
 {
 XPRSprob prob = new XPRSprob();
 prob.readProb("simple","");
 prob.maxim("");
 prob.writePrtSol();
 }

 catch(XPRSprobException xpe)
 {
 xpe.printStackTrace();
 }
 XPRS.free();
 }
}

Listing 4.43 Using the Optimizer library in Java
Xpress-MP Essentials Using Java with the Xpress-MP Libraries109

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Principal Structures

Data Types: Java parameters passed to the routines are related to the
C types in the following way:

Note that the types IntHolder, DoubleHolder and StringHolder
are all in the com.dashoptimization package.

Numerical Arrays: It is straightforward to use Java arrays in order to
pass arrays of integers and doubles. It is worth mentioning that arrays
must always be allocated before the function call, for example

double sol[] = new double[
prob.getIntAttrib(XPRS.COLS)];

prob.minim("");
prob.getSol(sol, null, null, null);

Failure to do so will crash the JVM.

Numerical References: In order to get integers and doubles back
from functions, as one would do using pointers in C, one of two
wrapper classes can be used: IntHolder and DoubleHolder. Each of
these classes contains a single public member variable of the
respective type, named value. For example:

IntHolder ni=new IntHolder();
prob.getIndex(1,"rowname",ni);

C argument type

int* (array of int)
int* (reference to an int)
double* (array of double)
double* (reference to a double)
char* (array of char)
char* (pointer to a ‘\0’ termi-
nated string passed to a routine)
char* (pointer to a ‘\0’ termi-
nated string received from a rou-
tine)

Java argument type

int []
IntHolder
double []
DoubleHolder
byte []
java.lang.String

StringHolder
Xpress-MP EssentialsUsing Java with the Xpress-MP Libraries 110

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

System.out.println("Index of ’rowname’ is:
"+ni.value);

If you need the integer (or double) to be passed both ways, make sure
you initialize the value field with the appropriate value before passing
it to the function.

Character Arrays and Strings: Some Optimizer routines require
strings passed to them as parameters, without modifying them. In this
case, java.lang.String may be used, for example

prob.readProb(args[0],"");

where args[0] is a java.lang.String. If the string passed needs
to be modified by the called function, the class StringHolder will be
used, for example:

StringHolder p_name=new StringHolder();
prob.getProbName(p_name);
System.out.println("The problem name is: "

+p_name.value);

Finally, if an array of characters is required by a routine, use a Java
array of byte[] which has been allocated in advance.

Controls and Problem Attributes: All the control and problem
attribute names used by the Optimizer are static final members of the
XPRS class. Here are two examples of how they can be used:

// get a problem attribute
double sol[] = new double[

prob.getIntAttrib(XPRS.COLS)];
// set a control
prob.setIntControl(XPRS.LPLOG,10);

Checking Errors: In certain situations all the XPRSprob member
functions generate exceptions that must be caught. The exception
class XPRSprobException is derived from java.lang.Exception
to which it adds two member functions:

public int getCode();
Xpress-MP Essentials Using Java with the Xpress-MP Libraries111

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

which returns the Optimizer error code associated with the exception
and

public XPRSprob getXPRSprob();

which returns a reference to the problem object that caused the
exception to be thrown.

In certain cases the XPRSprob object will remain valid after the
exception is thrown and this may be determined by checking the value
of getCode (See Chapter 9, “Return Codes & Error Messages” in the
Optimizer Reference Manual). Where the XPRSprob remains valid,
and depending on the context of the exception within the user’s
application, the exception can be recovered from, allowing the
program to continue. An example of this is where a program should
start by trying to load a warm-start basis from file. If this fails because
the file does not exist (therefore causing an exception) the default
initial basis can be used instead. By adding try-catch blocks around
particular sections of code, such recoverable exceptions may be dealt
with. An example is given in Listing 4.44.

Listing 4.44 Handling recoverable exceptions

try
{
 XPRSprob prob = new XPRSprob();
 ...
}

catch(XPRSprobException xpe)
{
 xpe.printStackTrace();
 System.out.println("Exit code: "+xpe.getCode());
 System.out.println("Message: "+xpe.getMessage());
 if(xpe.getXPRSprob()!=null)
 {
 ...
 }
}

Xpress-MP EssentialsUsing Java with the Xpress-MP Libraries 112

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

Using Callbacks in Java

In order to take advantage of callbacks from the Optimizer, a flexible
event structure is used by the Java Optimizer library API. Each callback
is defined as an event in a Listener interface. For an object to be the
target of a callback, its class must implement the corresponding
listener (e.g. XPRSmessageListener, XPRSlpLogListener, etc.).
Then the object must be registered with the XPRSprob object. When
an object is no longer interested in receiving events (callbacks), it
should be explicitly unregistered. The methods used to register and
unregister listeners are:

public void add<listener name>Listener(
Listener listener, Object data)
throws XPRSprobException;

and

public void remove<listener name>Listener()
throws XPRSprobException;

Note that for coding convenience, any Object reference can be
passed when registering the listener. The same object reference will
be passed back as a parameter to the corresponding Event method.

Listing 4.45 provides the simplest example of how the Message
callback can be used (the changes from the code in Listing 4.43 are
highlighted in bold face).

Listing 4.45 Using callbacks with Java

import com.dashoptimization.*;
import java.io.*;

public class CbTest implements XPRSmessageListener
{
 public static void main(String[] args)
 {

Be careful not to
destroy the listener
object while the
Optimizer may still
call it.
Xpress-MP Essentials Using Java with the Xpress-MP Libraries113

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Note that for each listener interface the Optimizer will send an event
to at most one listener object. A complete list of callbacks and their
associated listeners and events may be obtained from the Optimizer
Reference Manual following this convention. Refer to the online

 try
 {
 XPRS.init();
 }
 catch (Exception e)
 {
 System.out.println("Cannot initialize");
 }

 CbTest ML = new CbTest();

 try
 {
 XPRSprob prob = new XPRSprob();

 prob.addMessageListener(ML,null);

 prob.readProb("simple","");
 prob.maxim("");
 prob.writePrtSol();

 prob.removeMessageListener();
 }
 catch(XPRSprobException xpe)
 {
 xpe.printStackTrace();
 }
 XPRS.free();
 }

 public void XPRSmessageEvent(XPRSprob prob,
Object data, String msg, int len, int type)

 {
 System.out.println(msg);
 }
}

Listing 4.45 Using callbacks with Java
Xpress-MP EssentialsUsing Java with the Xpress-MP Libraries 114

Th
e

 X
p

re
ss

-M
P

Li

b
ra

ri
e

s
4

documentation for further details of this, or to the Optimizer
Reference Manual for usage.

Getting Help

Having worked through the chapter this far, you have learnt how to
compile, load and run model programs using the Mosel Libraries,
handle multiple models simultaneously and create matrix files as
output. You have learnt how to build and solve problems using BCL
and write matrix files from this library as well. You have also learnt
how to load these files into the Optimizer using the Optimizer library,
to optimize them, view the solution and change control variables
affecting how the optimization works. Finally you saw how models
may be constructed directly within the Optimizer using the ‘advanced’
functions, and alternative languages were discussed. In Chapter 5 we
will focus on the powerful Mosel model programming language to
teach you how to construct your own models. Additional help with
using the libraries may be found in the form of examples on the
Xpress-MP CD-Rom and in the Mosel, BCL and Optimizer Reference
Manuals.

Summary

In this chapter we have learnt how to:

use the Mosel Libraries to compile, load and run models;

use BCL to build and solve problems;

solve linear problems and access the solutions using the
Optimizer library;

solve integer problems;

input problems with the Optimizer library;

use the Xpress-MP Libraries with other languages.
Xpress-MP Essentials Getting Help115

4
Th

e
 X

p
re

ss-M
P

Lib
ra

rie
s

Xpress-MP EssentialsGetting Help 116

M
o

d
e

li
n

g
 w

it
h

X

p
re

ss
-M

o
se

l
5

5Modeling with Xpress-MPChapter 5
Modeling with
Xpress-Mosel

Overview
In this chapter, you will:
• construct simple models using the Mosel model programming language;
• develop versatile models through the use of subscripted variables, and constants;
• learn about separation of model data from model structure;
• learn about the use of data files and parameters.

Introduction

Over the course of the last few chapters we have seen how each of the
interfaces for Xpress-MP can be used to load and solve a simple model,
obtaining the optimal solution to the linear problem. For this chapter,
however, we begin to explore the Mosel model programing language
in greater detail, learning how to construct new models and to
interpret the solution produced. At the same time, the desirability of
flexible modeling will also be explored, as well as that of separating
Xpress-MP Essentials Introduction117

5
M

o
d

e
lin

g
 w

ith

X
p

re
ss-M

o
se

l

model structure from the data which makes up a particular instance of
that model.

The Xpress-Mosel model programing language can often be used in
many ways to model the same problem and the examples given here
will represent just one approach to this. Through these, we will aim
to introduce a large part of the language, although foremost in our
minds will always be the development of good modeling practice.

Constructing our First Model

The Burglar Problem

Burglar Bill breaks into a house one night with a sack to carry away
items of interest to him. He identifies a number of items which have
the following weights and estimated values:

Bill can only carry items up to a total weight of 102 pounds. Subject
to this, his aim is to maximize the estimated value of the items that he
takes.

Weight Value

Camera 2 15

Necklace 20 100

Vase 20 90

Picture 30 60

TV 40 40

Video 30 15

Chest 60 10

Brick 10 1
Xpress-MP EssentialsConstructing our First Model 118

M
o

d
e

li
n

g
 w

it
h

X

p
re

ss
-M

o
se

l
5

Problem Specification

Formulating the Burglar Problem mathematically is relatively simple.
Suppose that we have a decision variable, camera, which has the value
1 if Bill takes the camera and 0 otherwise. Suppose also that we have
a similar set of variables for the other items. The Burglar Problem may
then be expressed as:

This problem has a number of parts which should already be familiar
to you. The variables camera, necklace etc. are also often known as
decision variables as it is the value of these that must be decided on
during the solution process. In standard linear programming (LP)
problems, the decision variables can take any non-negative real values
and it was a problem of this kind which you will have solved in the past
three chapters. In the case of the Burglar Problem, however, it makes
little sense to take half a video, or even five necklaces if only one is
there. Instead this may be described as a (mixed) integer
programming (MIP) problem, with the decision variables only allowed
to be either 0 or 1. They are, in fact, binary variables.

The total weight of all the items taken is given by

2*camera + 20*necklace + 20*vase + 30*picture + 40*tv
+ 30*video + 60*chest + 10*brick

The value of this expression is constrained by the total weight of items
that Bill can carry, or in other words, this must be less than or equal to
102. LP or MIP problems can have any number of constraints such as
this, although for the purposes of this model only one is required.

Problem 1

Maximize: 15*camera + 100*necklace + 90*vase +
60*picture + 40*tv + 15*video +10*chest +
1*brick

Subject to: 2*camera + 20*necklace + 20*vase +
30*picture + 40*tv + 30*video + 60*chest +
10*brick

camera, necklace, vase, picture, tv, video,
chest, brick

102≤

0 1,{ }∈

"The decision
variables…"

"The constraint"
Xpress-MP Essentials Constructing our First Model119

5
M

o
d

e
lin

g
 w

ith

X
p

re
ss-M

o
se

l

The objective function is the value of the items taken. The objective
of the modeling exercise is to maximize this function subject to the
various constraints.

Entering the Model into Xpress-Mosel

Models specified using the Mosel model programming language are
divided up into a number of blocks, the outermost being the model
block. It is here that the problem is given a name, which we will
choose to be burglar for the purposes of this exercise. All blocks
must be explicitly ended using an accompanying end-<blockname>
keyword when the statements contained in them are complete.

The second main block that we will use initially is the declarations
block in which the variables are declared, along with their type.
Decision variables are of type mpvar. We demonstrate this in Listing
5.1.

Listing 5.1 Declaring decision variables

model burglar
 declarations
 camera, necklace, vase, picture: mpvar
 tv, video, chest, brick: mpvar
 end-declarations

end-model

model

The model block defines the problem name and contains
all statements to be considered part of the model. Any
text appearing after the end-model is treated as if it were
a comment and ignored.

declarations

In the declarations block are defined variables and
their type, sets and scalars.

"The objective
function…"

The problem name
forms the basis for a
number of files that
are generated by
the Optimizer and
Mosel.
Xpress-MP EssentialsConstructing our First Model 120

M
o

d
e

li
n

g
 w

it
h

X

p
re

ss
-M

o
se

l
5

The decision variables must also be specified as being binary-valued.
This is in some sense another constraint on the problem and so it is
stated outside of the declarations block along with the other
constraints. The syntax for this is simply

variable is_binary

Finally the constraint and objective function must be added. These
can be assigned a name and take the form:

name := linear_expression

If the linear expression is particularly long, it may be split over several
lines as necessary. There is no character or command which denotes a
split line to Mosel, but the line is assumed to continue if it ends in such
a way that more input is expected. An example might be if the line
ends in a binary operator such as ‘+’, following which another term is
expected. This is demonstrated in Listing 5.2 where the full model is
given.

Listing 5.2 Adding constraints to the model

model burglar
 declarations
 camera, necklace, vase, picture: mpvar
 tv, video, chest, brick: mpvar
 end-declarations

 camera is_binary
 necklace is_binary
 vase is_binary
 picture is_binary
 tv is_binary
 video is_binary
 chest is_binary
 brick is_binary

 TotalWeight := 2*camera + 20*necklace + 20*vase +
 30*picture + 40*tv + 30*video +
 60*chest + 10*brick <= 102

Similarly, variables
can be described as
integral using
is_integer.

"Continuation
lines…"
Xpress-MP Essentials Constructing our First Model121

5
M

o
d

e
lin

g
 w

ith

X
p

re
ss-M

o
se

l

The Optimizer Library Module

With the model constructed, it just remains to solve it to find the
maximum value of items that Bill can carry away with him. This can
also be done from within Mosel. In addition to the standard Mosel
syntax, additional functionality can be loaded into it in the form of
library modules allowing interaction with external applications. Using
the Optimizer library module, mmxprs, Mosel can call the Optimizer to
solve the problem and return the solutions for display. It does this
with the uses keyword. The objective function can then be
maximized using the maximize command. With both modeling and
solution components together, this is perhaps most accurately
described as a model program. A full model program for the problem
is given in Listing 5.3, with additions highlighted in bold face.

 TotalValue := 15*camera + 100*necklace + 90*vase +
 60*picture + 40*tv + 15*video +
 10*chest + 1*brick
end-model

Listing 5.3 The full burglar model program

model burglar1
 uses "mmxprs"

 declarations
 camera, necklace, vase, picture: mpvar
 tv, video, chest, brick: mpvar
 end-declarations

 camera is_binary
 necklace is_binary
 vase is_binary
 picture is_binary
 tv is_binary
 video is_binary
 chest is_binary
 brick is_binary

Listing 5.2 Adding constraints to the model

Library module
names take a mm
prefix to denote
‘Mosel Module’.

This model is on the
Xpress-MP CD as file
burglar1.mos.
Xpress-MP EssentialsConstructing our First Model 122

M
o

d
e

li
n

g
 w

it
h

X

p
re

ss
-M

o
se

l
5

The final part of this model program involves how we deal with the
solution once found. Using the writeln command, Mosel can be
instructed to output information such as the objective function value,
obtainable using getobjval.

Exercise Input the model program of Listing 5.3 and compile, load
and run it in Mosel using your chosen interface. What is the maximum
value of the haul that Bill can make? Which items does he take to
achieve this?

 TotalWeight := 2*camera + 20*necklace + 20*vase +
 30*picture + 40*tv + 30*video +
 60*chest + 10*brick <= 102

 TotalValue := 15*camera + 100*necklace + 90*vase +
 60*picture + 40*tv + 15*video +
 10*chest + 1*brick

 maximize(TotalValue)

 writeln("Objective value is ", getobjval)

end-model

uses

Allows for the loading of library modules into Mosel.

maximize / minimize

Optimization commands calling Mosel to optimize the
objective function declared as their argument.

writeln

Instructs Mosel to send information to standard output. It
can take any number of arguments, and each such is
returned in the stated order.

getobjval

Returns the objective function value following solution.

Listing 5.3 The full burglar model program
Xpress-MP Essentials Constructing our First Model123

5
M

o
d

e
lin

g
 w

ith

X
p

re
ss-M

o
se

l

Modeling Using Arrays

Array Variables and Indexing

Creating models in the form described above is convenient for small
numbers of decision variables, but as the size of the problem increases
it quickly becomes very cumbersome to work with. Already in our first
model specification it was untidy having to explicitly state that each
variable was binary and would be equally so if we were to use Mosel
to output the values of the decision variables. It is usual in modeling
even small problems like this to make use of array variables, or
subscripted variables as they are sometimes called.

Listing 5.4 shows an altered declarations section for the Burglar
Problem, introducing the various arrays that will be used.

The first thing defined here is an indexing set for the array elements,
called Items. Items is assigned to hold eight integer values,
effectively numbering the elements of the arrays. Following this two
more arrays are defined, WEIGHT and VALUE holding respectively the
weights and values for the items to be chosen from. They are declared
as arrays indexed by Items with entries that are of type real. The
Mosel type real corresponds to double precision floats in C. Mosel
also supports types integer and string which have direct analogs in
other programming languages. Outside of the declarations block
these two arrays have their data entered as a comma-separated list.

Listing 5.4 declaring and entering data into arrays

 declarations
 Items = 1..8
 WEIGHT: array(Items) of real
 VALUE: array(Items) of real
 x: array(Items) of mpvar
 end-declarations

 WEIGHT := [2, 20, 20, 30, 40, 30, 60, 10]
 VALUE := [15,100, 90, 60, 40, 15, 10, 1]
Xpress-MP EssentialsModeling Using Arrays 124

M
o

d
e

li
n

g
 w

it
h

X

p
re

ss
-M

o
se

l
5

The final array defined in the declarations block is x which will act
as our decision variable. It is an array, also indexed by Items, with
entries of type mpvar.

Looping and Summation

Using arrays does not just make the variable declaration tidier. By
looping through the array of decision variables we can also declare
the variables as binary in a single statement. Mosel supports simple
looping with the help of the forall statement.

Mosel also supports summation notation with the sum command, used
extensively in constructing linear expressions for constraints and the
objective function.

Using these to define the decision variables as binary and to set up the
constraint and objective function results in the statements in Listing
5.5.

forall

Allows looping through an index set. Its structure is:

forall(var in set) statement

where var is a dummy variable, set is an indexing set and
statement is to be executed on each such entry.

sum

Allows summation over an index set. Its structure is:

sum(var in set) expression

where var is a dummy variable, set is an indexing set and
expression is the generic term in the sum.

Multiple statements
may be executed
with a forall loop
by placing them in a
do / end-do block.
For details of this
and further details
of forall structure,
see page 165.
Xpress-MP Essentials Modeling Using Arrays125

5
M

o
d

e
lin

g
 w

ith

X
p

re
ss-M

o
se

l

Comments

With the use of arrays and subscripting, a better model for the Burglar
Problem is almost complete. However, as with all programming, it is
good practice to ensure that your model is adequately commented to
make it easier for both yourself and other to read. It has already been
mentioned that any amount of commentary can be added following
the end-model statement, but what happens when you want to place
comments in the body of the model itself? For exactly this purpose,
the Mosel model programming language supports two types of
comments. Single line comments are introduced with the ! character.
Any text following this character is ignored as comment to the end of
the line. For multiline commentary, the pair (! and !) must be used.

With comments added, a model program for the Burglar Problem is
given in Listing 5.6.

Listing 5.5 Looping and summation in the Burglar Problem

 forall(i in Items) x(i) is_binary
 TotalValue := sum(i in Items) x(i)*VALUE(i)
 TotalWeight:= sum(i in Items) x(i)*WEIGHT(i)<=102

Listing 5.6 Second attempt at the Burglar Problem

model burglar2 (! Modeling with arrays, subscripts,
 summations, looping and comments !)
 uses "mmxprs"

 declarations
 Items = 1..8 ! 8 items
 WEIGHT: array(Items) of real
 VALUE: array(Items) of real
 x: array(Items) of mpvar
 end-declarations

 ! Item: 1, 2, 3, 4, 5, 6, 7, 8
 WEIGHT := [2, 20, 20, 30, 40, 30, 60, 10]
 VALUE := [15,100, 90, 60, 40, 15, 10, 1]

This model is on the
Xpress-MP CD as file
burglar2.mos.
Xpress-MP EssentialsModeling Using Arrays 126

M
o

d
e

li
n

g
 w

it
h

X

p
re

ss
-M

o
se

l
5

The additional lines at the bottom of the model instruct Mosel to
output the values of the decision variables as well as the objective
function value. For this another forall loop has been used to go
through the variable array returning the solution value for each
element using getsol.

Exercise Alter your model program to use array variables, such as in
Listing 5.6. Compile, load and run it. Which items are taken by Bill?

Using String Indices

The model program developed above is considerably simpler to use
than our first attempt, but interpreting the solution is made more
difficult since we have to manually match up the index number for a
variable with the item that it represents. It would be far more useful

 ! All x are binary
 forall(i in Items) x(i) is_binary

 ! Objective: maximize the haul
 TotalValue := sum(i in Items) x(i)*VALUE(i)

 ! Constraint: weight restriction
 TotalWeight:= sum(i in Items) x(i)*WEIGHT(i)<=102

 maximize(TotalValue)

 writeln("Objective value is ", getobjval)
 forall(i in Items) writeln(" x(",i,") = ",

getsol(x(i)))
 writeln
end-model

getsol

Returns optimal values of the decision variables following
solution of the problem. Its single argument is the
variable whose value should be returned.

Listing 5.6 Second attempt at the Burglar Problem
Xpress-MP Essentials Modeling Using Arrays127

5
M

o
d

e
lin

g
 w

ith

X
p

re
ss-M

o
se

l

if all this information could be presented together. Mosel allows for
this with the use of string indices rather than numerical ones.

The use of index sets in the Mosel model programming language is
perhaps more simple and natural even than using numerical arrays.
Defining Items as a string set is the only change necessary and this is
demonstrated in Listing 5.7.

Listing 5.7 Using string indices in the Burglar Problem

model burglar3
 uses "mmxprs"

 declarations
 Items = {"camera", "necklace", "vase",
 "picture", "tv", "video",
 "chest", "brick"}
 WEIGHT: array(Items) of real
 VALUE: array(Items) of real
 x: array(Items) of mpvar
 end-declarations

 ! Item: ca, ne, va, pi, tv, vi, ch, br
 WEIGHT := [2, 20, 20, 30, 40, 30, 60, 10]
 VALUE := [15,100, 90, 60, 40, 15, 10, 1]

 ! All x are binary
 forall(i in Items) x(i) is_binary

 ! Objective: maximize the haul
 TotalValue := sum(i in Items) x(i)*VALUE(i)

 ! Constraint: weight restriction
 TotalWeight:= sum(i in Items) x(i)*WEIGHT(i)<=102

 maximize(TotalValue)

 writeln("Objective value is ", getobjval)
 forall(i in Items) writeln(" x(",i,") = ",

getsol(x(i)))
 writeln
end-model

This model is on the
Xpress-MP CD as file
burglar3.mos.
Xpress-MP EssentialsModeling Using Arrays 128

M
o

d
e

li
n

g
 w

it
h

X

p
re

ss
-M

o
se

l
5

Exercise Alter your model program to make use of string index sets.
Compile, load and run it and compare the output with before.

Versatility in Modeling

Generic and Instantiated Models

The Burglar Problem is just one example of a number of similar
modeling problems, known also as knapsack problems. Whilst the
above model represents a good first step toward modeling the Burglar
Problem, it could still be made easier to generalize should the number
of items need to be increased, or even if the problem is changed to a
different knapsack problem. With the problem already specified in
terms of array variables, the remaining difficulties are largely due to
the fact that the data are currently ‘hard-wired’ into the model —
there is no separation between model data and structure. For the
current section we shall discuss ways of overcoming these limitations.

Models are generally formulated using symbols to represent the
various decision variables, with the relationship between these
variables described by a set of equations and inequalities — the
constraints. The systematic description of these constraints forms the
generic model. Combining this with a given set of data produces a
particular numerical model, the model instance, which can then be
optimized. Separating off the model structure from the numerical
data results in more flexible models which are easier to maintain. For
this reason, our aim over the next few pages is to impose such a
distinction on the model just created.

Scalar Declarations

Looking at the model of Listing 5.7, the constraints are already almost
in a suitably flexible form. However, the specific information about
the maximum weight that Bill can take is still embedded within the
body of the model. We can easily get around this by defining a scalar,

Separation also
allows you to dis-
tribute models as
BIM files, protect-
ing intellectual
property.
Xpress-MP Essentials Versatility in Modeling129

5
M

o
d

e
lin

g
 w

ith

X
p

re
ss-M

o
se

l

MAXWT, assigning this the value 102 and then using that throughout
the model instead.

Additional quantities such as this may be assigned values from within
the declarations block at the head of the model file. Any quantity
which is assigned a value in this way is assumed to be a constant.

Inputting Data From Text Files

The other change we shall make to the model program at this stage is
to separate out the model array data and input it from an external
data file. Mosel does this through use of the initializations
block.

Suppose that the file burglar4.dat in the Data subdirectory
contains the following information:

Then, placing the arrays WEIGHT and VALUE in the initializations
block, Mosel will read in the data to fill the arrays at run time. A full
listing for the model program implementing this is given in Listing 5.9,
with changes highlighted in bold face.

Enter the data of Listing 5.8 into a file burglar4.dat in the Data
subdirectory and alter your previous model to input data from this
file. Compile, load and run to check this has worked smoothly.

initializations

Enables data to be input from a stated text file. Arrays
and constants may be specified in any order and it will be
read in at run time.

Listing 5.8 Structure of an external data file

! Data file for burglar4.mos
WEIGHT: [2 20 20 30 40 30 60 10]
VALUE: [15 100 90 60 40 15 10 1]

Note that the array
values are no longer
comma-separated.
Xpress-MP EssentialsVersatility in Modeling 130

M
o

d
e

li
n

g
 w

it
h

X

p
re

ss
-M

o
se

l
5

Completing the Burglar Problem

If you have completed the last exercise, the obvious question to ask is
‘how much more can we input from the data file?’ Certainly the value
of the scalar MAXWT need not be specified in the model program and
can be saved to the data file. The same is actually true of the index
set, since the number and names of the items to choose from are really

Listing 5.9 Inputting data from sources files

model burglar4
 uses "mmxprs"
 declarations
 Items = {"camera","necklace","vase","picture",
 "tv","video","chest","brick"}
 WEIGHT: array(Items) of real
 VALUE: array(Items) of real
 MAXWT = 102
 x: array(Items) of mpvar
 end-declarations

 ! Read in data from external file
 initializations from 'Data/burglar4.dat'
 WEIGHT
 VALUE
 end-initializations

 ! All x are binary
 forall(i in Items) x(i) is_binary

 ! Objective: maximize the haul
 TotalValue :=sum(i in Items) x(i)*VALUE(i)

 ! Constraint: weight restriction
 TotalWeight:=sum(i in Items) x(i)*WEIGHT(i)<=MAXWT

 maximize(TotalValue)

 writeln("Objective value is ", getobjval)
 forall(i in Items) writeln(" x(",i,") = ",

getsol(x(i)))
 writeln
end-model

This model is on the
Xpress-MP CD as file
burglar4.mos.
Xpress-MP Essentials Versatility in Modeling131

5
M

o
d

e
lin

g
 w

ith

X
p

re
ss-M

o
se

l

model data rather than part of the model structure. Suppose, then,
that the data file was modified to include the following information:

If the model program could input all this information at run time, we
would finally have separated all the model data from its structure.
Listing 5.11 shows the changes to the model program to handle input
of this.

Listing 5.10 Revised data file for the Burglar Problem

! Data file for burglar5.mos
Items:["camera" "necklace" "vase" "picture" "tv"
 "video" "chest" "brick"]
MAXWT:102
WEIGHT:[2 20 20 30 40 30 60 10]
VALUE:[15 100 90 60 40 15 10 1]

Listing 5.11 Completing the Burglar model program

model burglar5
 uses "mmxprs"

 parameters
 WeightFile = 'Data/burglar5.dat'
 end-parameters

 declarations
 Items: set of string
 MAXWT: real
 WEIGHT: array(Items) of real
 VALUE: array(Items) of real
 x: array(Items) of mpvar
 end-declarations

 ! Read in data from external file
 initializations from WeightFile
 Items MAXWT WEIGHT VALUE
 end-initializations

 forall(i in Items) create(x(i))

The set is defined as
a string array.

This model is on the
Xpress-MP CD as file
burglar5.mos.
Xpress-MP EssentialsVersatility in Modeling 132

M
o

d
e

li
n

g
 w

it
h

X

p
re

ss
-M

o
se

l
5

Jumping to the declarations block, the first thing to note is that
Items and MAXWT have to have their type declared if their data is to
be read in subsequently. Items is a (index) set comprising elements
which are strings, and we have defined MAXWT to have the same type
as the elements of the arrays VALUE and WEIGHT.

If the model is run with just these changes applied, it will fail at run
time, claiming that the model is empty. The problem arises from the
fact that our decision variable, x, has been declared as indexed by a
set of, as yet, undetermined size. Since the indexing set is not input
until later, the decision variable array is dynamic and is initialized with
no entries. In this case, the array must be generated explicitly, which
we do here using the create command.

In fact, this is not the only way to get around this problem. A second
declarations block could be included immediately following the

 ! All x are binary
 forall(i in Items) x(i) is_binary

 ! Objective: maximize the haul
 TotalValue :=sum(i in Items) x(i)*VALUE(i)

 ! Constraint: weight restriction
 TotalWeight:=sum(i in Items) x(i)*WEIGHT(i)<=MAXWT

 maximize(TotalValue)

 writeln("Objective value is ", getobjval)
 forall(i in Items) writeln(" x(",i,") = ",

getsol(x(i)))
 writeln
end-model

create

Explicitly creates a variable that is part of a previously
declared dynamic array.

Listing 5.11 Completing the Burglar model program

"Understanding
Listing 5.11…"
Xpress-MP Essentials Versatility in Modeling133

5
M

o
d

e
lin

g
 w

ith

X
p

re
ss-M

o
se

l

initializations block and the x variable could be declared here
instead. An example of the relevant parts of the model is given in
Listing 5.12.

The linear nature of the way in which Mosel statements are read and
interpreted from a model file means that Items is well-defined for all
statements in the second set of declarations, since the size and entries
in Items are known immediately following the initializations
block. For the current model either of these two methods will work
perfectly well, although we will work with the former, keeping the
blocks together purely for clarity.

Exercise Alter your model program to look like Listing 5.11. Compile,
load and run it as before to solve the problem.

Listing 5.12 Using two declarations sections

 declarations
 Items: set of string
 MAXWT: real
 WEIGHT: array(Items) of real
 VALUE: array(Items) of real
 end-declarations

 ! Read in data from external file
 initializations from WeightFile
 Items MAXWT WEIGHT VALUE
 end-initializations

 declarations
 x: array(Items) of mpvar
 end-declarations
Xpress-MP EssentialsVersatility in Modeling 134

M
o

d
e

li
n

g
 w

it
h

X

p
re

ss
-M

o
se

l
5

Using Parameters with Mosel

The final change in Listing 5.11, which has not yet been discussed, is
right at the top of the model program and involves the use of the
parameters block. Using this, parameters may be defined whose
values are then input throughout the model program as they are
encountered. The values may be numeric or of string type, so if we
had wanted to run the problem with a selection of different maximum
weights, MAXWT could have been defined here as a parameter rather
than a scalar. In this example we show how the data file name can be
defined initially and then used in the initializations block later
to input data to create a model instance.

We illustrate this point with the introduction of a second example.

The Hiker Problem

Henry decides to go on a hiking holiday carrying all the items that he
will need in his rucksack. He has five items from which to choose what
he will take and each item that he takes represents a certain saving on
his holiday. For example, by taking a tent and sleeping bag, he saves
on accommodation costs. The items and their relative savings are as
follows:

parameters

This block contains a list of parameter symbols along with
their default values to be input into the model program at
run time if no alternative values are specified.

Weight Saving

Tent 60 100

Sbag 28 50

Camera 20 35

Clock 8 10

Food 40 50
Xpress-MP Essentials Versatility in Modeling135

5
M

o
d

e
lin

g
 w

ith

X
p

re
ss-M

o
se

l

However, he can only carry items up to a maximum weight of 100
pounds. What items should Henry take to maximize his saving?

Solving the Hiker Problem

This problem is another example of a knapsack problem and as such
the model structure is identical to that which we have been creating
in this chapter. To solve the problem, therefore, we only need run the
same model program again with a different set of model data. This is
illustrated in Listing 5.13, where the saving will be loaded into the
array VALUE.

Exercise Enter the data of Listing 5.13 into a file hiker.dat in the
Data subdirectory. The compiled file burglar5.bim can be loaded
into Mosel and run, passing the WeightFile=’Data/hiker.dat’
parameter as an argument to run. Which items should Henry take
and what is his maximum saving?

A full listing demonstrating this using Mosel as a Console application
is given in Listing 5.14.

Listing 5.13 Data file for the Hiker Problem

! hiker.dat - Data file for Hiker Problem
Items:["Tent" "Sbag" "Camera" "Clock" "Food"]
MAXWT: 100
WEIGHT: [60 28 20 8 40]
VALUE: [100 50 35 10 50]
Xpress-MP EssentialsVersatility in Modeling 136

M
o

d
e

li
n

g
 w

it
h

X

p
re

ss
-M

o
se

l
5

Getting Help

Over the course of this chapter we have developed a relatively simple
knapsack problem to introduce some of the basic elements of the
Mosel model programming language. Over successive iterations of
this process we saw the benefits of separating model structure from
its data in terms of versatility in modeling. However a presentation
such as this can only really scratch the surface and there are many
features of the Mosel language which have not been touched on. In
the following chapter a few of these will be briefly discussed to
provide a feel for what else is possible, but for full details you should
consult the Mosel Reference Manual. This gives a detailed description
of all the possibilities in the language as well as describing the
functions in some of the standard library modules accompanying the
software. The various models described in this chapter can all be
found on the installation CD-ROM along with many other examples of
using the Mosel language.

Listing 5.14 Solving the Hiker Problem

C:\Mosel Files>mosel
** Xpress-Mosel **
(c) Copyright Dash Associates 1998-zzzz
>load burglar5
>run WeightFile='Data/hiker.dat'
Objective value is 160
 x(Tent) = 1
 x(Sbag) = 1
 x(Camera) = 0
 x(Clock) = 1
 x(Food) = 0

Returned value: 0
>

Xpress-MP Essentials Getting Help137

5
M

o
d

e
lin

g
 w

ith

X
p

re
ss-M

o
se

l

Summary

In this chapter we have learnt how to:

declare variables, arrays, constants and indexing sets;

enter constraints and the objective function;

employ the Optimizer library module to solve problems
and to use writeln to return solution information;

use subscripted variables, summation and simple looping
constructs;

input data from external files, separating model data
from the structure.
Xpress-MP EssentialsGetting Help 138

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

6Further Mosel TopicsChapter 6
Further Mosel Topics

Overview
In this chapter you will:
• learn about using sets and arrays;
• learn how to import and export data using data files and spreadsheets;
• learn about conditional variables and constraints;
• meet the basic programming structures of the Mosel language;
• learn about writing subroutines in your models.

Introduction

In the previous chapter we saw how models can be described in a
number of different ways using the Mosel model programming
language, going beyond the trivial examples which had been used as
a basis for learning the interfaces in Chapters 2 – 4. Despite the variety
of ideas covered there, a number of topics related to the Mosel
language are worth a brief discussion. Each topic described here is a
self-contained unit and can be read independently of the others if you
have a particular interest for your own modeling.
Xpress-MP Essentials Introduction139

6
Fu

rth
e

r M
o

sel
To

p
ics
The topics that will be described here are the following:

• constant sets, dynamic sets and set operations;
• multi-dimensional, dynamic and sparse arrays;
• importing data from files and ODBC-enabled products;
• conditional generation of variables and constraints;
• selection and looping constructs;
• writing your own procedures and functions.

Further details of these may be found in the Mosel Reference Manual.

Working With Sets

Sets are collections of objects of the same type, where an ordering is
not imposed on their elements. Mosel sets may be defined for any of
the elementary types: the basic types (integer, real, string and
boolean) and the Xpress-MP types (mpvar and linctr). They can be
initialized in three different ways, which we briefly recall.

Constant Sets: Sets whose elements have been declared within a
declarations section in a model are constant sets — their contents
cannot subsequently be changed. An example of this would be:

declarations
 SnowGear = {’hat’,’coat’,scarf’,’gloves’,’boots’}
end-declarations

File Initialization: Elements of sets may also be stored in data files
and imported into a model using an initializations block:

declarations
 FIB: set of integer
end-declarations

initializations from ’datafile.dat’
 FIB
end-initializations

Data importing is
covered in detail in
“Importing and
Exporting Data” on
page 148.
Xpress-MP EssentialsWorking With Sets 140

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

where the file datafile.dat contains data such as:

FIB: [1 1 2 3 5 8 13 21]

Implicit File Initialization: Sets used to index arrays may also be
initialized indirectly during initialization of the array. For a model

declarations
 REGION: set of string
 DEMAND: array(REGION) of real
end-declarations

initializations from ’transport.dat’
 DEMAND
end-initializations

where the file transport.dat might contain data such as:

DEMAND: [(North) 240 (South) 159 (East) 52 (West) 67]

the set REGION will be initialized as:

{’North’,’South’,’East’,’West’}

Dynamic, Fixed and Finalized Sets

Sets which are not constant are considered by Mosel to be dynamic,
that is, elements may be added to or removed from the set at any
point. Once a set has been used to index an array, it becomes fixed
and elements may no longer be deleted, although further elements
can still be added. In many cases, however, the contents of a set do
not change once it has been initialized and in such circumstances there
is little reason to prefer dynamic sets over constant ones. Rather the
opposite is true, for the following reason: Arrays indexed by dynamic
sets are themselves created dynamic in Mosel. Since Mosel handles
static arrays (those indexed by constant sets) slightly more efficiently
than dynamic arrays, it is preferable to employ static arrays in models
where possible. For this reason, Mosel provides the finalize
statement allowing you to turn dynamic sets into constant ones.
Xpress-MP Essentials Working With Sets141

6
Fu

rth
e

r M
o

sel
To

p
ics
In a continuation of the previous example, this might be used as
follows:

finalize(FIB)

declarations
 x: array(FIB) of mpvar
end-declarations

Set Operations

In all examples so far in this manual, sets have been employed purely
for the indexing of other modeling objects. However, this need not
be the case and we provide details here of a few of the other
possibilities available. Some of these are demonstrated in Listing 6.1.

This example illustrates the use of the following three set operations:

• set union (‘+’);
• set intersection (‘*’);
• set difference (‘-’).

Listing 6.1 Using set operators

model Sets
 declarations
 Cits = {"Rome","Bristol","London","Paris",

"Liverpool"}
 Ports = {"Plymouth","Bristol","Glasgow",

"London","Calais","Liverpool"}
 Caps = {"Rome","London","Paris","Madrid"}
 end-declarations

 writeln("Union of all places: ", Cits+Ports+Caps)
 writeln("Intersection of all three: ",

Cits*Ports*Caps)
 writeln("Cities that are not capitals: ",Cits-Caps)

end-model
Xpress-MP EssentialsWorking With Sets 142

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

The first and last of these have associated operators ‘+=’ and ‘-=’
which act on sets in much the same way as they do on numbers,
modifying a set subject to the elements of another.

Exercise Type in and run the example of Listing 6.1 to find the union,
intersection and difference of the sets of places. Alter your example
to use the operators ‘+=’ and ‘-=’.

Mosel supports a number of other operators for use with sets. The in
operator has already been seen in several examples of the forall
structure, allowing us to loop over all elements of a set. Comparison
operators may also be used and include: subset (‘<=’), superset (‘>=’),
difference (‘<>’) and equality (‘=’), returning boolean expressions.
Their use is illustrated in Listing 6.2.

Exercise Enter the model of Listing 6.2, altering it to include the other
comparison operators in output statements. What is the output
produced?

Listing 6.2 Using set comparison operators

model "Set Comparisons"

 declarations
 RAINBOW = {"red","yellow","orange","green",

"blue","indigo","violet"}
 BRIGHT = {"orange","yellow"}
 DARK = {"blue","brown","black"}
 end-declarations

 writeln("BRIGHT is included in RAINBOW: ",
BRIGHT<=RAINBOW)

 writeln("BRIGHT is not the same as DARK: ",
BRIGHT<>DARK)

 writeln("RAINBOW contains DARK: ", RAINBOW>=DARK)

end-model
Xpress-MP Essentials Working With Sets143

6
Fu

rth
e

r M
o

sel
To

p
ics
Working with Arrays

In contrast to sets, arrays are ordered collections of objects of the same
type and may be defined for any of the elementary types: the basic
types (integer, real, string and boolean) and the Xpress-MP
types (mpvar and linctr). Arrays may be indexed by a set, examples
of which have been seen in the last section, or more simply using the
natural numbers without reference to a defined set.

Multi-Dimensional Arrays

Initializing and entering data into arrays in one dimension may be
simply achieved in the following way.

declarations
 OneDim: array(1..10) of real
end-declarations

OneDim:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

We have already seen many examples of setting up one-dimensional
arrays in Chapter 5. Initializing multi-dimensional arrays can be
achieved in exactly the same manner, although in this case formatting
can be used advantageously to make the result more intuitive. In two
dimensions, this could be done as follows:

declarations
 TwoDim: array(1..2,1..3) of real
end-declarations

TwoDim:= [11, 12, 13,
 21, 22, 23]

which is, of course, syntactically the same as

TwoDim:= [11, 12, 13, 21, 22, 23]

These statements are interpreted by Mosel by placing the values into
the array TwoDim row-wise — it is the last subscript which varies most
rapidly. Thus, the values in the arrays are the following:
Xpress-MP EssentialsWorking with Arrays 144

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

TwoDim[1][1] = 11
TwoDim[1][2] = 12
TwoDim[1][3] = 13
TwoDim[2][1] = 21
TwoDim[2][2] = 22
TwoDim[2][3] = 23

In higher dimensions, the same principle may be applied. Listing 6.3
describes a small model which enters data into a three-dimensional
array and then prints out the array elements along with their values.

Exercise Enter the model of Listing 6.3 and compile, load and run it.
Check that the array element indices correspond to the element
values.

Listing 6.3 Initializing a three-dimensional array

model ThreeDimEx
 declarations
 ThreeDim: array(1..2,1..3,1..4) of integer
 end-declarations

 ThreeDim:= [111, 112, 113, 114,
 121, 122, 123, 124,
 131, 132, 133, 134,
 211, 212, 213, 214,
 221, 222, 223, 224,
 231, 232, 233, 234]

 forall(i in 1..2, j in 1..3, k in 1..4) do
 writeln("ThreeDim(",i,",",j,",",k,") = ",
 ThreeDim(i,j,k))
 end-do
end-model

See page 165 for
details of the
‘forall’ structure.
Xpress-MP Essentials Working with Arrays145

6
Fu

rth
e

r M
o

sel
To

p
ics
Fixed and Dynamic Arrays

Arrays in the Mosel language may have either a fixed size, or be
dynamically sized as the model program is run. By default an array is
created of fixed size if all its indexing sets are of fixed size, in other
words if they are constant, or have had their sizes finalized. Fixed
arrays have space for all their cells created at the point of declaration
with uninitialized cells given the value 0 or ’’ (the empty string)
depending on the array type.

By contrast, if the size of an array is not known at the point of
declaration, it is created dynamic. This might occur if one of its index
sets does not have a fixed size, possibly because it is yet to be read in
from an external file. Dynamic arrays are created empty and have cells
added as they are assigned values, allowing the array to grow as
necessary. An array may further be forced to be dynamic by using the
dynamic qualifier.

If an array of type mpvar is either declared as dynamic, or becomes
implicitly so, with the size of at least one of its indexing sets unknown
at declaration, the corresponding variables are not created. In such
circumstances, the individual elements must all be created by hand
using the create command. If this is not done, the array will have
zero size, no decision variables will exist and the problem will be
empty. An example of this was seen in Listing 5.11 in the previous
chapter and we shall encounter it again in the section “Conditional
Variables and Constraints” on page 159.

Sparsity

Almost all large scale LP and MIP problems have a property known as
sparsity, that is each variable appears with a nonzero coefficient in a
very small fraction of the total set of constraints. Often this property
is reflected in the data arrays used in the model, with many zero
values. When this happens, it is more convenient to provide just the
nonzero values of the data array rather than listing all the values. This
is also the easiest way to input data into data arrays with more than
two dimensions. An added advantage is that less memory is used.

Suppose that we have a data file, SparseEx.dat, which contains the
information in Listing 6.4.

For details of the
possible set types,
see “Working With
Sets” previously.
Xpress-MP EssentialsWorking with Arrays 146

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

In this example an element of the array COST has a nonzero value
assigned for sending a product from Depot1 to Customer1, from
Depot2 to Customer1 and so on. However, since no cost is defined
for sending a product from Depot2 to Customer3, the array is
considered sparse. In Listing 6.5, the model reads in the data
contained in this file and prints a list of all possible DEPOT-CUSTOMER
pairs with their associated costs. Those elements which had no cost
assigned are given the value 0.

In this example, the array COST is dynamically sized since the sizes of
neither of its indexing sets were known when it was declared. The
only space that is used to hold data corresponds to the number of
entries added — space for the extra zero elements is not created. This
can be seen by using the command display COST at the console.

Listing 6.4 A sparse data format array example

! SparseEx.dat - Data for SparseEx.mos
COST: [(Depot1 Customer1) 11
 (Depot2 Customer1) 21
 (Depot3 Customer2) 32
 (Depot2 Customer2) 22
 (Depot1 Customer3) 13]

Listing 6.5 Inputting data in sparse data format

model SparseEx
 declarations
 DEPOT, CUSTOMER: set of string
 COST: array(DEPOT,CUSTOMER) of integer
 end-declarations

 initializations from 'SparseEx.dat'
 COST
 end-initializations

 forall(d in DEPOT, c in CUSTOMER)
 writeln(d," -> ",c,": ",COST(d,c))
end-model

In this file format,
the bracketed terms
denote the place in
the array where the
value is to be stored.
Xpress-MP Essentials Working with Arrays147

6
Fu

rth
e

r M
o

sel
To

p
ics
Exercise Enter the above model and run it in Mosel. By displaying the
‘value’ of the array COST, check that this array is dynamic.

Importing and Exporting Data

There are obvious benefits to be gained from separating the form, or
structure, of a model from the particular data that make up a model
instance. The Mosel model programming language encourages this
modeling principle and incorporates a powerful set of facilities for
importing and exporting data.

It is possible to enter data into Mosel model program arrays in four
main ways:

• directly in the model program file;
• by use of the initializations block;
• by use of ODBC;
• by use of the readln command.

The latter three ways also provide corresponding methods for the
export of data following solution. In this section we cover each of
these and discuss their relative benefits.

Model Data Entry

Perhaps the simplest method of entering data in Mosel arrays involves
embedding data directly in the model itself. We have seen a number
of examples of this in the previous chapter, but a further example of
how data may be entered in this way is provided in Listing 6.6.

In this example a one-dimensional array of size five is created and data
is entered: A(1) is assigned the value 1, A(2) the value 2.5 and so on.
Finally the array is displayed to the console using a writeln
statement.
Xpress-MP EssentialsImporting and Exporting Data 148

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

Whilst quick and easy to use, the downside to this method is that it
does not in any way separate model structure from its data. Its use is
therefore perhaps limited to the creation of small test examples or the
development of prototype models.

Data Transfer Using the initializations Block

The initializations block may be used to initialize basic objects
such as scalars, arrays or sets from external data files and can be used
to export solution data later in the model program.

Importing Data from ASCII Files: An initialization data file must
contain one or more records of the form:

label: value

where label is a text string and value is either a constant, or a
collection of values separated by spaces and enclosed in square
brackets. Collections of values are used to initialize sets or arrays.
During data input, each object to be initialized is associated to a
label in the external file. This is typically the same label as the object
name, but may be different if the modifier as is used. When an
initializations block is executed, the given file is opened and the
requested labels are searched for in this file to initialize the
corresponding objects.

No particular formatting is required in the file: spaces, tabs and line
breaks are all normal separators. Moreover, single line comments are

Listing 6.6 Native data entry into arrays

model NativeEx
 declarations
 A: array(1..5) of real
 end-declarations

 A:=[1, 2.5, -6.1, 10, 77]

 writeln("A is: ",A)
end-model
Xpress-MP Essentials Importing and Exporting Data149

6
Fu

rth
e

r M
o

sel
To

p
ics
also supported within the file. An example of such a file is given in
Listing 6.7.

In this file one integer (Item) is defined along with two arrays (A1 and
albatross). Listing 6.8 provides an example model file which reads
these values into memory.

Several things are worth noting in this example. Firstly, the name of
the data file should appear on the same line as the beginning of the
initializations block, quoted and following the word from.
Since the initializations block can also be used for data export,

Listing 6.7 ASCII file format to use with initializations

! InitEx.dat: Using the initialization block
Item: 25
albatross: [12.9 76 1.55 0.99]
A1: [23 15 43 29 90 180]

Listing 6.8 Model file to demonstrate input from ASCII files

model InitEx
 declarations
 Item: integer
 A1: array(1..6) of integer
 A2: array(1..4) of real
 end-declarations

 initializations from ’InitEx.dat’
 Item A1
 A2 as "albatross"
 end-initializations

 writeln("Item is: ",Item)
 writeln("A1 is: ",A1)
 writeln("A2 is: ",A2)
end-model
Xpress-MP EssentialsImporting and Exporting Data 150

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

the from modifier specifies the sense of the data transport. In this
case we are obtaining information from an external source.

Second, since items in the initializations block are separated by
spaces, several of these may be placed on the same line. In the
example, we have done this with Item and A1. It should also be noted
that objects here need not be in the same order as the data in the
accompanying data file, although it is often sensible to maintain the
order, if only for the sake of clarity.

Finally, the array data associated with the label albatross in the data
file is to be read into the array A2. This is achieved in the model file
by use of the as modifier. Since the label in the data file must be
quoted in the model file when this construct is used, labels in the
model file may consist of more than one word if necessary.

Exercise Type in the example above, or create your own to read in
and display data. Your example should demonstrate all of the
possibilities described above.

Exporting Data to ASCII Files: An equivalent method may also be
used to export data from Mosel to external data files following
solution of the problem, with the format for the initializations
block being:

initializations to filename
 identifier [as label]
end-initializations

When this form is executed, the values of all provided labels in the file
are updated with the current value of the corresponding identifier. If
a label cannot be found, a new record is appended to the end of the
file and the file is created if it does not exist.

Exercise Alter your model from the exercise above to export the data
to a separate file using this format. Consult the new file with a text
editor or similar to see how data has been entered.
Xpress-MP Essentials Importing and Exporting Data151

6
Fu

rth
e

r M
o

sel
To

p
ics
Data Transfer Using ODBC

Creating and maintaining data in text files is quite a simple process,
but for many people a considerably more efficient and useful format
is provided by spreadsheets and databases. A facility exists in the
Mosel language whereby data may be imported from, and exported
to, ODBC-enabled spreadsheet and database programs using the
structured query language, SQL. To do so requires the use of the
library module mmodbc, in addition to an extra authorization in your
Xpress-MP license.

Setting Up ODBC: Suppose that in a spreadsheet called Myss.xls
the following data has been entered into the stated cells and the

range B2:C5 has been called MyRange. When data is imported into
Xpress-MP from a spreadsheet, the first row in the marked range is
always assumed to contain column headings and is consequently
ignored. In this example, data from MyRange would fill an array of
size 3*2 and in the following, ODBC will be used to extract this data
into an array A(3,2).

Exercise Set up a user data source for Excel, as described in the box
‘Using ODBC’.

A B C

1

2 First Second

3 6.2 1.3

4 -1.0 16.2

5 2.0 -17.9

Using ODBC

In Windows’ Control Panel, select 32-bit ODBC and set up
a User Data Source called MyExcel by clicking Add,
selecting Microsoft Excel Driver (*.xls) and filling in the
ODBC Microsoft Excel Setup dialog. Click Options >> and
clear the Read Only check box.

If you are going to
work through the
examples here, you
will need access to
Microsoft Excel.

A spreadsheet range
must have a top row
with column titles.
Xpress-MP EssentialsImporting and Exporting Data 152

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

Importing Data From ODBC-Enabled Products: In Listing 6.9 we
demonstrate how data may be read into Mosel from an Excel
spreadsheet such as this. Notable here is that SQL syntax must be used
to obtain the required data from the spreadsheet and the statement
‘SELECT * FROM MyRange’ says, quite simply, that everything in the
range MyRange is to be returned. This is then placed into the array A
as required.

Exercise Construct a model (or alter one of your previous ones) which
obtains its data from Excel in this way.

Exporting Data to ODBC-Enabled Products: Exporting data back
to spreadsheets can be achieved in much the same manner. An
example of this is provided in Listing 6.10, where a new sheet is
created, New, into which data from the array A is entered.

Listing 6.9 Reading in data from an Excel spreadsheet

model ODBCImpEx
 uses "mmodbc"

 declarations
 A: array(1..3,1..2) of real
 CSTR: string
 end-declarations

 CSTR:= ’DSN=MyExcel; DBQ=Myss.xls’

 setparam("SQLndxcol",false)
 SQLconnect(CSTR)
 SQLexecute("SELECT * FROM MyRange",[A])
 SQLdisconnect

 forall(i in 1..3)do
 writeln("Row(",i,"): ",A(i,1)," ",A(i,2))
 end-do
end-model
Xpress-MP Essentials Importing and Exporting Data153

6
Fu

rth
e

r M
o

sel
To

p
ics
Since SQL is used for any communication between Mosel and ODBC-
enabled applications, far more complicated statements than this are
possible. You should consult any standard text on SQL for details of
the possibilities.

Exercise Alter your previous model to output data back into Excel
following solution of a problem, or alter one of the previous examples
to do this. If you encounter problems, consult the following section.

Opening and Using Microsoft Excel Tables: A number of points
should be considered when writing data to Microsoft Excel from
Mosel. Since Excel is a spreadsheet application and ODBC was
primarily designed for databases, special rules have to be followed to
read and write Excel data using ODBC:

• named ranges must be used in an Excel worksheet to refer to
tables of data;

• column names must be used as field names;

Listing 6.10 Writing data to an Excel spreadsheet

model ODBCExpEx
 uses "mmodbc"

 declarations
 A: array(1..3,1..2) of real
 end-declarations

 forall(i in 1..3,j in 1..2) A(i,j) := i*j

 setparam("SQLndxcol",false)
 SQLconnect(’DSN=MyExcel; DBQ=Myss.xls’)
 SQLexecute("CREATE TABLE New(Col1 integer, Col2

integer)")
 SQLexecute("INSERT INTO New(Col1,Col2) VALUES

(?,?)",A)
 SQLdisconnect

end-model
Xpress-MP EssentialsImporting and Exporting Data 154

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

• the data type of each field should be defined using a row of
specimen data below the column headings.

When using ODBC with Excel, it is important that the top row of each
range contains the column headings — otherwise errors will occur and
data will not be transferred correctly to and from the worksheet. A
row of specimen data is also required in the row below the column
headings to identify the data type of each column. This specimen row
must also be included in the range.

Users should also be aware that when writing to database tables
specified by a named range in Excel, the range will increase in size if
new data is added. Now suppose that we wish to write further data
over the top of data that has already been written to a range using
ODBC. Within Excel it is not sufficient to delete the previous data by
selecting it and hitting the Delete key. If this is done, further data will
be added after a blank rectangle where the deleted data used to
reside. Instead, it is important to use Edit, Delete, Shift cells up within
Excel, which will eliminate all traces of the previous data, and the
enlarged range.

Microsoft Excel tables can be created and opened by only one user at
a time. However, the ‘Read Only’ option available in the Excel driver
options allows multiple users to read from the same .xls files.

Sizing Arrays for Spreadsheet Data: Since Mosel evaluates objects
that it encounters in the order in which they are encountered, the
sizes of tables may be adjusted dynamically. In practice, this allows for
the possibility that, having written a model, the size of the region in
the spreadsheet may actually change if additional data is entered.
Since this is a particularly useful trick, we will briefly describe its usage
here.

Suppose that we are continuing to work with the spreadsheet
Myss.xls and we are concerned that the size of MyRange may
change as more data are added. This can be dealt with by
constructing an additional region of the spreadsheet, which we will
name Sizes. Into this we will put the numbers that characterize the
problem as follows:

Number of Rows Number of Columns

Reducing the num-
ber of rows by 1
allows for the row
containing just the
column names.
Xpress-MP Essentials Importing and Exporting Data155

6
Fu

rth
e

r M
o

sel
To

p
ics
Naming the range formed by the two cells in the first column as NRows
and the range formed by the two cells in the second column as NCols,
the commands in Listing 6.11 may then form the introductory part of
a model.

Exercise Alter your previous model to allow for dynamic resizing of
the tables. Now change the number of rows with data to be read in
and run the new model in Mosel. Check that the extra data is
imported.

Data Transfer Using readln and writeln Commands

A considerably more general method for reading data from ASCII files
is provided by the readln and read commands. These commands

=ROWS(MyRange)-1 =COLUMNS(MyRange)

Listing 6.11 Dynamic table sizing with spreadsheets

model SizingEx
 uses "mmodbc"

 declarations
 NRows, NCols: integer
 end-declarations

 SQLconnect(’DSN=MyExcel;DBQ=Myss.xls’)
 NRows:=SQLreadinteger("select NRows from Sizes")
 NCols:=SQLreadinteger("select NCols from Sizes")

 declarations
 A: array(1..NRows,1..NCols) of real
 end-declarations

 SQLexecute("select * from MyRange",[A])
 SQLdisconnect

 forall(i in 1..NRows,j in 1..NCols) do
 writeln("A(",i,",",j,") = ", A(i,j))
 end-do
end-model
Xpress-MP EssentialsImporting and Exporting Data 156

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

assign the data read in from the active input stream to given symbols,
or attempt to match a given expression with what is read in. The
command readln expects all symbols to be recognized to be
contained in a single line, whereas read allows this to flow over
multiple lines.

Use of these commands is perhaps best illustrated by way of an
example. Suppose we have an input data file containing information
such as that described in Listing 6.12.

This file, ReadlnEx.dat, is then read in by the model program which
is described in Listing 6.13. The model begins in the usual way by
declaring variables necessary for the problem. The data in the file are
to be read into the array A, which is sparse and to be sized dynamically.

Listing 6.12 File format for use with readln

! File ReadlnEx.dat
read_format(1 and 1)= 12.5
read_format(2 and 3)= 5.6
read_format(10 and 9)= -7.1

Listing 6.13 Reading in data with readln

model ReadlnEx
 declarations
 A: array(range,range) of real
 i, j: integer
 end-declarations

 fopen("ReadlnEx.dat",F_INPUT)
 readln("!")
 repeat
 readln("read_format(",i,"and",j,")=",A(i,j))
 until getparam("nbread") < 6
 fclose(F_INPUT)

 writeln("A is: ",A)
end-model

Note here that the
dynamic array A is
indexed by a
dynamic set, range.

See page 167 for
details of the
‘repeat’ structure.
Xpress-MP Essentials Importing and Exporting Data157

6
Fu

rth
e

r M
o

sel
To

p
ics
Using the fopen command, the data file is opened and assigned to the
active input stream, F_INPUT. We then read a line containing the !
character, since the first line of our file will contain a comment.
Following this, the repeat loop reads in as many lines as it can in the
format described in Listing 6.12, assigning the value after the = sign to
an array element indexed by the numerical values spanning the word
‘and’. Finally the input stream is closed and the array is printed to the
console.

During a run of the program, the commands read and readln set a
control parameter, nbread, to the number of items actually
recognized in a line. By consulting this, it becomes evident when
information has been read in which does not match a given string. In
our example, after the first line we might expect six items per line to
be recognized by the parser. This can be used to end the repeat loop
when there is no further data to be read in.

Exercise Create your own model which uses readln and read to
input data from an external source file, displaying the data that it has
read.

Exporting Data With write and writeln: Array and solution data
may be written to file in much the same way using the writeln and
write commands. By opening a file and assigning it the active output
stream, F_OUTPUT, any subsequent write or writeln commands will
direct output to the file rather than to the console. An example of this
is given in Listing 6.14 where the simple problem of Chapters 2 – 4 is
again solved and solution values exported to a data file.

It should be noted that when information is exported in this manner,
any information currently in the file being written to is lost and the
file is completely overwritten with the new data. When this is
undesirable, files may instead be opened for appending using:

fopen(Filename,F_APPEND)

Exercise Enter the model of Listing 6.14 and run it, writing data to
the file WritelnEx.dat. Now alter the model to append data and
run the program again. Consult the output file with a text editor.
Xpress-MP EssentialsImporting and Exporting Data 158

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

Conditional Variables and Constraints

Conditional Bounds

Suppose that we wish to apply an upper bound to some, but not all
members of a set of N variables, . The upper bound that will be
applied varies for each variable and these are given by the set .
However, they should only be applied if the entry in the data table

 is greater than some other amount, say 20. If the bound did
not depend on the value of , as has been usual up to now, then
this might have been expressed using:

forall(i in 1..N) x(i) <= U(i)

For the conditional bound, however, this must be altered slightly:

Listing 6.14 Outputting solution data with writeln

model WritelnEx
 uses "mmxprs"

 declarations
 a,b: mpvar
 end-declarations

 first:= 3*a + 2*b <= 400
 second:= a + 3*b <= 200
 profit:= a + 2*b

 maximize(profit)

 fopen("WritelnEx.dat",F_OUTPUT)
 writeln("Profit = ",getobjval)
 writeln("a=",getsol(a),": b=",getsol(b))
 fclose(F_OUTPUT)
end-model

xi
Ui

CONDi
CONDi
Xpress-MP Essentials Conditional Variables and Constraints159

6
Fu

rth
e

r M
o

sel
To

p
ics
forall(i in 1..N | COND(i) > 20) x(i) <= U(i)

Thus the line in the second of these examples reads “for i=1 to N, the
variable x(i) must be less than or equal to U(i) whenever COND(i)
is greater than 20”.

Conditional Variables

The existence of variables can also be made conditional by declaring a
dynamic array of variables and then creating only those which satisfy
a certain condition. An example of this is given in Listing 6.15. The
only variables which will actually be defined here are x(1), x(2),
x(3), x(6), x(8) and x(10). By constructing a small model and
outputting it to the console, this is evident.

|

The vertical bar (|) character, followed by a logical
expression denotes a conditional operator and should be
read as “to be done whenever the following expression is
true”, or “such that”.

Listing 6.15 Conditional generation of variables

model ConditionalEx
 declarations
 Elements = 1..10
 COND: array(Elements) of integer
 x: dynamic array(Elements) of mpvar
 end-declarations

 COND:= [1, 2, 3, 0, -1, 6, -7, 8, -9, 10]

We have already
seen an example of
this in Chapter 5,
where the indexing
set was also input
from an external
file. For details, see
Listing 5.11 on
page 132.
Xpress-MP EssentialsConditional Variables and Constraints 160

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

Exercise Create and run the model of Listing 6.15. Check that only six
variables exist by checking the LP format matrix of the constructed
problem.

Use of exportprob in this way provides a nice way of seeing directly
the problem that has just been created. Without specifying a file
name for output, the matrix is displayed on screen.

Basic Programming Structures

The Mosel model programming language provides all the possibilities
of a high-level programming language in addition to commands and
procedures for model specification. This provides powerful additions
to the modeling environment, some of which we shall now discuss.

if Statements

The general form of the if statement is:

if expression_1
then commands_1
[elif expression_2
then commands_2]
[else commands_3]
end-if

 forall(i in Elements | (COND(i) = i)) create(x(i))

 ! build a little model to show what’s there
 obj:= sum(i in Elements) x(i)
 c:= sum(i in Elements) i*x(i) >= 10
 exportprob(0,"",obj)
end-model

Listing 6.15 Conditional generation of variables
Xpress-MP Essentials Basic Programming Structures161

6
Fu

rth
e

r M
o

sel
To

p
ics
The selection is executed by evaluating the boolean expression_1. If
this is true, then commands_1 are executed and control passes to
after the end-if statement. If optional elif sections are included,
then the boolean expression_2 is evaluated and if this is true, then
commands_2 are executed, before control passes to after the end-if
statement. If none of the expressions prefixed with either if or elif
evaluate to true, then any commands_3 following an optional else
statement are executed. The program continues from after the
end-if statement. An example of this is given in Listing 6.16.

In this example an integer DEBUG is used to control output during a
run of a model. For normal use, DEBUG is set to 0, so the only
statement output by Mosel is to tell us when and from where the data
have been read in. However, since DEBUG is a parameter, its value can
be changed at run time and if it is set to 1, the data read in will also
be displayed to confirm that everything is set correctly. Listing 6.17
shows an example session with Mosel in which this model program is

Listing 6.16 Using if statements in modeling

model IfEx
 parameters
 DEBUG=0
 File=’InitEx.dat’
 end-parameters

 declarations
 A: array(1..6) of integer
 Item: integer
 end-declarations

 initializations from File
 Item A as "A1"
 end-initializations

 if(DEBUG=1) then
 writeln("Item is ",Item,"\nA is ",A)
 else
 writeln("Data read in from ",File,"...")
 end-if
end-model

The parameters
block lists quanti-
ties which may be
changed at run
time, along with
their default values.

The command
sequence \n is inter-
preted as a newline
character only when
enclosed in double
quotes.
Xpress-MP EssentialsBasic Programming Structures 162

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

run first as normal and then subsequently with the DEBUG parameter
set to 1.

Using this facility provides a particularly convenient way of debugging
long models. It is a common trick to use the writeln command
during debugging to output values of variables when trying to detect
the cause of an error. If any statements added for this purpose are
enclosed in an if statement of this form, then they can be left in the
model when debugging has been completed, rather than having to
identify and remove the extra statements. If further details are to be
subsequently added to the model, then additional debugging may be
required. The next time around, your debugging statements will
already be in place to help.

Exercise Enter and run the example of Listing 6.16 both as normal
and with the DEBUG feature enabled. Now alter the model program
using an elif statement to add an extra DEBUG level of 2 which
additionally prints out the file name from which the data is collected.

Listing 6.17 Using the model debugging feature

C:\Mosel Files>mosel
** Mosel **
(c) Copyright Dash Associates 1998-zzzz
>cload IfEx
Compiling `IfEx'...
>run
Data read in from InitEx.dat...
Returned value: 0
>run DEBUG=1
Item is 25
A is [23,15,43,29,90,180]
Returned value: 0
>

Another example
like this can be
found in Listing 6.22
on page 170.
Xpress-MP Essentials Basic Programming Structures163

6
Fu

rth
e

r M
o

sel
To

p
ics
case Statements

The general form of the case statement is:

case Expression_0 of
 Expression_1: Statement_1
 or
 Expression_1: do Statement_list_1 end-do
 [
 Expression_2: Statement_2
 or
 Expression_2: do Statement_list_2 end-do
 ...]
 [else Statement_list_3]
end-case

The selection is executed by evaluating the boolean Expression_0 and
sequentially comparing it with each Expression_i until a match is
found. At this point either Statement_i or Statement_list_i is executed
(depending on the form of the construction) and control passes to
after the end-case statement. If none of the expressions match and
the else statement is present, then the statement(s) Statement_list_3
are executed and control passes to after the end-case. A simple
example demonstrating this is given in Listing 6.18.

In this example the entries in an array A are searched through and
categorized according to a (somewhat bizarre) rule: it is interesting to
know whether they are either 0, in the range 1 to 3 inclusive, or else
either 8 or 10. Anything falling outside of this is declared as ‘not
interesting’ to us. Each element in A is categorized and a statement
about its value is printed to the screen.

Exercise Construct your own model program which makes use of the
case construction. Alternatively, adapt your previous program to use
the case construction to handle multiple debugging levels in code.
Xpress-MP EssentialsBasic Programming Structures 164

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

forall Loops

The general form of the forall statement is:

forall (Iterator_list) Statement
or
forall (Iterator_list) do Statement_list end-do

Here the Statement or Statement_list is repeatedly executed for each
possible index tuple generated by the Iterator_list. An example of this
is provided in Listing 6.19.

In this example, Mosel fills the array F with the first 20 numbers in the
Fibonacci sequence, printing them to the console as it goes. In this
sequence the first two numbers are 1 and subsequent numbers are
generated as the sum of the two preceding. By looping through the
indexing set Elems, a simple if statement determines if we are
initializing the first two terms and, if not, applies the algorithm to
determine the next term in the sequence.

Listing 6.18 A simple case example

model CaseEx
 declarations
 A: array(1..10) of integer
 end-declarations

 A:=[1,2,3,0,-1,1,3,8,2,10]

 forall(i in 1..10) do
 case A(i) of
 0: writeln('A(',i,') is 0')
 1..3: writeln('A(',i,') is between 1 and 3')
 8,10: writeln('A(',i,') is either 8 or 10')
 else writeln('A(',i,') is not interesting')
 end-case
 end-do
end-model
Xpress-MP Essentials Basic Programming Structures165

6
Fu

rth
e

r M
o

sel
To

p
ics
Other examples that we have seen involving the forall loop include
setting decision variables as binary in Listing 5.6 and explicitly creating
variables in Listing 5.11, both in the previous chapter.

Exercise Create your own model program making use of the forall
loop, or enter and run the example given here.

while Loops

The general form of the while statement is:

while (Expression) Statement
or
while (Expression) do Statement_list end-do

With this construction, the boolean Expression is evaluated and the
Statement or Statement_list is executed as long as Expression is true.
If Expression evaluates to false, the while statement is completely
skipped. An example is given in Listing 6.20.

The while statement is used here to construct a ‘times table’, printing
the product of the row and column numbers. At the end of each row

Listing 6.19 A simple forall example

model ForallEx
 declarations
 Elems=1..20
 F: array(Elems) of integer
 end-declarations

 forall(i in Elems) do
 if(i=1 or i=2) then
 F(i):=1
 else F(i):= F(i-1) + F(i-2)
 end-if
 writeln("F(",i,")\t= ",F(i))
 end-do
end-model

The command
sequence \t is inter-
preted as a tab char-
acter only when
enclosed in double
quotes.
Xpress-MP EssentialsBasic Programming Structures 166

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

a newline character is printed, whilst between numbers in a row the
tab character is used.

Exercise Either enter the example in the listing or create your own
example making use of the while statement. Compile, load and run
it to check output.

repeat Loops

The final looping structure is the repeat loop, which has the
following general form:

repeat Statement_1
[Statement_2…]
until Expression

Listing 6.20 A simple while example

model WhileEx
 declarations
 i,j: integer
 end-declarations

 i:=1
 j:=1

 while(i <= 10) do
 while(j <= 10) do
 write(i*j)
 if(j=10) then writeln
 else write("\t")
 end-if
 j+=1
 end-do
 j:=1
 i+=1
 end-do
end-model
Xpress-MP Essentials Basic Programming Structures167

6
Fu

rth
e

r M
o

sel
To

p
ics
Here Statement_1 (and any further statements) are repeatedly
executed until the boolean Expression evaluates to false. By contrast
with the while loop, statements in a repeat loop are guaranteed to
be executed at least once, since the execution takes place before the
Expression is evaluated. An example is given in Listing 6.21.

This example provides a short program testing numbers to see if they
are prime. When run, the user is prompted to enter a number which
is then repeatedly tested until either a divisor is found or it is found to
be prime.

Exercise Enter the example of Listing 6.21 and run it. Now alter it to
test numbers input to make sure they are integral and bigger than
zero. You may need to consider separately how to cope with the
input of 1.

Listing 6.21 A simple repeat example

model RepeatEx
 declarations
 i: integer
 number: integer
 end-declarations

 i:=1
 writeln("Input a positive integer:")
 readln(number)

 repeat i+=1
 until ((number mod i =0) or i>sqrt(number))

 if(i>sqrt(number)) then writeln(number," is prime!")
 else writeln(number," is divisible by ",i)
 end-if
end-model
Xpress-MP EssentialsBasic Programming Structures 168

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

Procedures and Functions

It is possible to group together sets of statements and declarations in
the form of subroutines which can be called several times during the
execution of a model. Mosel supports two kinds of subroutines:
procedures and functions. Both of these can take parameters, define
local data and call themselves recursively.

Procedures

Procedures consist of a collection of statements which should be run
together in a number of places. On execution the statements in the
body are run and no value is returned.

An example of a procedure is given in Listing 6.22, printing a banner
at the beginning of a model run. For models using parameters, an
example such as this can provide a useful way of classifying output,
particularly if used for information sent to file rather than to the
screen. Listing 6.23 shows the use of this program from Console
Xpress.

Create a simple procedure outputting a banner at the beginning of a
model run. If your model makes use of parameter or other settings
read in from external files, you could have these output as well.

procedure

The procedure block takes the form:

procedure proc_name [(param_list)]
 proc_body
end-procedure

where proc_name is the procedure’s name and param_list
its list of formal parameters, separated by commas. When
the procedure is called, statements in proc_body are
executed.
Xpress-MP Essentials Procedures and Functions169

6
Fu

rth
e

r M
o

sel
To

p
ics
Listing 6.22 A simple procedure

model ProcEx
 parameters
 DEBUG=0
 File='InitEx.dat'
 end-parameters

 procedure banner(DEBUG:integer,File:string)
 writeln("This is the ProcEx model, release 1")
 if(DEBUG = 1) then
 writeln("\tDebugging on...")
 end-if
 if(File <> 'InitEx.dat') then
 writeln("\tInput file ",File," in use...")
 end-if
 writeln
 end-procedure

 banner(DEBUG,File)
end-model

Listing 6.23 Running the procedure with parameter input

C:\Mosel Files>mosel
** Mosel **
(c) Copyright Dash Associates 1998-zzzz
>cload ProcEx
Compiling `ProcEx'...
>run
This is the ProcEx model, release 1

Returned value: 0
>run 'DEBUG=1,File=data.dat'
This is the ProcEx model, release 1
 Debugging on...
 Input file data.dat in use...

Returned value: 0
>

Procedures may be
placed together at
the end of the
model as long as
they are declared
before use using the
forward keyword.
See the following
sections for details.

Extra debugging
information is also
made available by
using the g flag
with compile or
XPRMcompmod.
Xpress-MP EssentialsProcedures and Functions 170

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

Functions

A function is a collection of statements which should be run together
in one or more places, and returns a value.

Listing 6.24 provides an example of using three functions to find
perfect numbers. A perfect number is one for which the sum of its
divisors is equal to itself. The first function, isPrime, checks the
primality or otherwise of a number, whilst the second calculates
positive integral powers of a number. Finally, the third calls these to
generate Mersenne Primes, from which it calculates perfect numbers
using Euclid’s formula.

Notable in this example is the keyword returned which must be
present in any function description. Its value is sent back to the caller
when the function exits, so it should be set to a value of basic type
type, as declared at the top of the function. In our example, integer
values are assigned to returned either by each possibility from an if
statement, or from the power calculation.

Exercise Enter the example of Listing 6.24 and run it to calculate the
first four or five perfect numbers. Adapt the code to make the
functions more general, rejecting invalid arguments.

function

The function block takes the form:

function func_name [(param_list)]: type
 func_body
end-function

where func_name is the function’s name, param_list its list
of formal parameters, separated by commas and type is
the basic type of the return value. When the procedure is
called, statements in func_body are executed and a value
returned.
Xpress-MP Essentials Procedures and Functions171

6
Fu

rth
e

r M
o

sel
To

p
ics
Listing 6.24 Calculating perfect numbers with functions

model PerfectEx
 function isPrime(number: integer): boolean
 i := 1
 repeat i+= 1
 until ((number mod i = 0) or i > sqrt(number))
 if(i > sqrt(number)) then returned := true
 else returned := false
 end-if
 end-function

 function power(a,b: integer): integer
 pow := 1
 while(b > 0) do
 pow := pow*a
 b-=1
 end-do
 returned := pow
 end-function

 function Perfect(n: integer): integer
 Mn := power(2,n)-1
 if(isPrime(Mn)) then
 returned := power(2,n-1)*Mn
 else returned := 0
 end-if
 end-function

 i := 1; k := 1
 while(k<5) do
 i+=1
 if(Perfect(i) > 1) then
 write(Perfect(i)," = ")
 forall(j in 0..i-1) write(power(2,j),"+")
 write(power(2,i)-1)
 forall(j in 1..i-2)
 write("+",(power(2,i)-1)*power(2,j))
 writeln; k+=1
 end-if
 end-do
end-model

Forward declara-
tion of functions is
also permitted. See
the following
sections for details.
Xpress-MP EssentialsProcedures and Functions 172

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

Recursion

Both functions and procedures may be used recursively, either calling
themselves directly, or indirectly. This can be particularly useful, for
which reason we provide an example. In Listing 6.25 the function hcf
is called recursively to determine the highest common factor of two
numbers.

Exercise Type in the example of Listing 6.25 and experiment with it
on a few examples.

Listing 6.25 Recursion of functions

model HcfEx
 function hcf(a,b: integer): integer
 if(a=b) then
 returned:=a
 elif(a>b) then
 returned:=hcf(b,a-b)
 else
 returned:=hcf(a,b-a)
 end-if
 end-function

 declarations
 A,B: integer
 end-declarations

 write("Enter two integer numbers:\n A: ")
 readln(A)
 write(" B: ")
 readln(B)

 writeln("Highest common factor: ",hcf(A,B))
end-model
Xpress-MP Essentials Procedures and Functions173

6
Fu

rth
e

r M
o

sel
To

p
ics
Forward Declaration

We have already hinted that Mosel allows not just for recursion, but
also cross recursion, where two subroutines alternately call each
other. However, since all functions and procedures must be declared
before they can be called, the subroutine defined first will of necessity
call another which has not been defined. The solution is to use the
forward keyword to declare one or both of the subroutines before
their commands are defined.

An important distinction should be made at this point between the
various vocabulary used. The declaration of a subroutine states its
name, the parameters (type and name) and, in the case of a function,
the type of the return value. The definition of the subroutine that will
follow later in the model program contains the body of the
subroutine, that is, the commands that will be executed when the
subroutine is called.

This difference is perhaps best illustrated by way of an example. In
Listing 6.26 we implement a quick sort algorithm for sorting a
randomly-generated array of numbers into ascending order. The
procedure start that starts the sorting algorithm is defined at the
very end of the program, so it needs to be declared at the beginning
before it is called.

Listing 6.26 Forward declaration of subroutines

model "Quick Sort"
 parameters
 LIM=50
 end-parameters

 forward procedure start(L:array(range) of integer)

 declarations
 T: array(1..LIM) of integer
 end-declarations

 forall(i in 1..LIM) T(i):=round(.5+random*LIM)
 writeln(T)
 start(T)
 writeln(T)

"Declaration v.
definition…"
Xpress-MP EssentialsProcedures and Functions 174

Fu
rt

h
e

r
M

o
se

l
To

p
ic

s
6

 ! swap the positions of two numbers in an array
 procedure swap(L:array(range) of integer,

 i,j:integer)
 k:=L(i)
 L(i):=L(j)
 L(j):=k
 end-procedure

 ! main sorting routine
 procedure qsort(L:array(range) of integer,

 s,e:integer)
 ! Determine partitioning value
 V:=L((s+e) div 2)
 i:=s; j:=e
 repeat ! Partition into two subarrays
 while(L(i)<V) i+=1
 while(L(j)>V) j-=1
 if(i<j) then
 swap(L,i,j)
 i+=1; j-=1
 end-if
 until i>=j

 ! Recursively sort the two subarrays:
 if(j<e and s<j) then
 qsort(L,s,j)
 end-if

 if(i>s and i<e) then
 qsort(L,i,e)
 end-if
 end-procedure

 ! start of the sorting process
 procedure start(L:array(r:range) of integer)
 qsort(L,getfirst(r),getlast(r))
 end-procedure

end-model

Listing 6.26 Forward declaration of subroutines
Xpress-MP Essentials Procedures and Functions175

6
Fu

rth
e

r M
o

sel
To

p
ics
The idea of the quick sort algorithm is to partition the array that is to
be sorted into two parts. One of these contains all values smaller than
the partitioning value and the other all the values that are larger than
this value. The partitioning is then applied to the two subarrays
recursively until all the values are sorted.

Exercise Type in the model of Listing 6.26, or adapt your previous
examples to place all subroutine definitions at the end of the
program.

Use of the forward keyword is particularly useful in providing
structure to your model files and making them easier to follow. By
placing all detail of a model into subroutines and providing the
descriptions of these at the end, the main flow of the program is
evident.

Having reached this point, you have encountered enough features of
the Mosel model programming language to enable you to create your
own, more sophisticated models and solve them using the interface of
your choice. As you develop these, you may need to use further
features of the Mosel language, all of which may be found in the
Mosel Reference Manual. The following (and final) chapter of this
introduction provides a glossary of some of the terms that have been
used.

Summary

In this chapter we have learnt how to:

initialize fixed-size and dynamic array in several
dimensions;

import and export model data using external sources and
applications;

create conditional expressions and variables;

create selection and looping structures;

write functions and procedures.
Xpress-MP EssentialsProcedures and Functions 176

ry
 o

f
s

7Glossary of TermsChapter 7
Glossary of Terms

binary variable

A decision variable that may take the values 0 or 1 in a solution.
Problems that contain binary variables are mixed integer
programming problems.

bound

A simple constraint, used to set simple upper or lower bounds on a
decision variable, or to fix a decision variable to a given value.

constraint

A linear inequality (or equation) that must be satisfied by the value of
the decision variables at the optimal solution.

constraint type

There are five types of constraint: (greater than or equal to), (less
than or equal to), (equal to), ranged and unconstraining, e.g. an
objective function.

continuous variable

A decision variable that may take any value between 0 and infinity (or
between some lower and upper bound in general). Also called a
linear variable.

control

A parameter in the Optimizer whose value influences the solution
process.

≥ ≤
=

Xpress-MP Essentials 177 G
lo

ss
a

Te
rm

7

7
G

lo
ssa

ry
 o

f
Term

s

decision variable

An object (an ‘unknown’) whose value is to be determined by
optimization. In linear programming (LP) problems, all decision
variables are linear (or continuous), that is, they may take any value
between 0 and infinity (or between a lower and upper bound in
general). In mixed integer programming (MIP) problems, some
variables may be binary, integer etc., or form a special ordered set.
Sometimes referred to simply as ‘variables’.

dj

See reduced cost.

dual value

The change in the objective value per unit change in the right hand
side of a constraint. Sometimes referred to as the shadow price — the
‘price’ of the resource being rationed by the constraint. The dual
value is a measure of how tightly a constraint is acting. If we are hard
up against a constraint, then a better objective value might be
expected if the constraint is relaxed a little. The dual value gives a
numerical measure to this. Generally, if the right hand side of a
row is increased by 1, then the objective value will increase by the dual
value of the row. More specifically, since the dual value is a marginal
concept, if the right hand side increases by a sufficiently small then
the objective value will increase by dual value.

global entity

Any integer, binary, partial integer or semi-continuous variable or a
special ordered set.

input cost

The original objective coefficient of a variable.

integer programming (IP) problem

An alternative name for a mixed integer programming (MIP) problem,
in particular, one which doesn't contain any linear variables.

≤

≤

δ
δ ×
Xpress-MP Essentials178

ry
 o

f
s

integer variable

A decision variable that may take the values 0, 1, 2,… up to some small
upper limit in a solution. Problems that contain integer variables are
mixed integer programming problems.

keyword (in Mosel)

A keyword in an Xpress-MP model is either a model command or else
introduces / terminates a block. It is an element of the Mosel model
programming language, or from a loaded library module. Typical
keywords are declarations and uses.

linear expression

A term (or sum of terms) of the form constant decision variable.

linear inequality or equation

A linear expression that must be ‘greater than or equal to’, ‘less than
or equal to’, or ‘equal to’ a constant term (the right hand side).

linear programming (LP) problem

A decision problem made up of linear decision variables, an objective
function and constraints. The objective function and constraints are
linear functions of the decision variables. The data values (i.e. the
coefficients of the variables and the constant terms in constraints) are
all known values.

linear variable

A decision variable that may take any value between 0 and infinity (or
between some lower and upper bound in general). Also called a
continuous variable.

mixed integer programming (MIP) problem

A linear programming (LP) problem which contains some global
entities, e.g. some of the variables may be binary variables, integer
variables, etc. or form a special ordered set.

×

Xpress-MP Essentials 179 G
lo

ss
a

Te
rm

7

7
G

lo
ssa

ry
 o

f
Term

s

model

The set of decision variables, objective function, constraints and data
that define the problem. Often used to mean the Xpress-MP
representation of the problem.

model instance

A model structure complete with explicit data, i.e. values for the data
and parameters.

model program

A model combined with imperative statements possibly related to
solving it. These are run by Mosel and written in the Mosel model
programming language.

model structure

The definition of the decision variables, data tables and constraints,
and the algebraic relationship between them, without specifying any
explicit data or parameters.

objective function

A linear or quadratic expression which is to be optimized (maximized
or minimized) by choosing values for the decision variables.

optimal solution

A solution that achieves the best possible (maximum or minimum)
value of the objective function.

partial integer variable

A decision variable that, in a solution, may take the values 0, 1, 2,… up
to some small upper limit, and then any continuous value over that
limit. Problems that contain partial integer variables are mixed
integer programming problems.
Xpress-MP Essentials180

ry
 o

f
s

problem attribute

A value set by the Optimizer during the solution process, which may
be retrieved by library users. It is a particular property of the problem
being solved or its solution.

reduced cost

The amount by which the objective coefficient of a decision variable
would have to change for the variable to move from the bound it is
at. Sometimes referred to as the ‘dj’.

right hand side (RHS)

The constant term in a constraint. By convention the value is written
on the right hand side of the constraint, although this is not necessary
in Xpress-MP.

semi-continuous variable

A decision variable that, in a solution, may take the value 0 or any
continuous value in a range from a lower limit to an upper limit.
Problems that contain semi-continuous variables are mixed integer
programming problems.

shadow price

See dual value.

slack value

The amount by which a constraint differs from its right hand side.

solution

A set of values for the decision variables that satisfy the constraints.
See also optimal solution.

special ordered set (SOS)

An ordered set of variables that must fulfil a special condition. In a
Special Ordered Set of type 1 (an ‘SOS1’ or ‘S1 set’) at most one
variable may be nonzero. In a Special Ordered Set of type 2 (an ‘SOS2’
Xpress-MP Essentials 181 G
lo

ss
a

Te
rm

7

7
G

lo
ssa

ry
 o

f
Term

s

or ‘S2 set’) at most two variables may be nonzero, and if two variables
are nonzero, they must be next to each other in the ordering. In
Xpress-MP the ordering is supplied in a ‘reference row’, which may be
an ordinary constraint or a separate unconstraining constraint. There
is no requirement that the variables must take integer values.

variable

See decision variable.
Xpress-MP Essentials182

Index

Symbols
! See comments
\0 See null-terminated
\n See newline character
\t See tab character
| See conditional operator

A
active problem 17, 33, 34, 55, 74
algorithm 40, 44, 78

setting 40, 78
arrays

byte arrays 102
dynamic arrays 133, 146, 147, 157, 160
entering data 144, 146, 148
fixed size arrays 146
multi-dimensional arrays 144
sparse arrays 146, 157

as 149

B
batch mode 26, 32
BCL 48, 61

constraints 63, 64, 68
error checking 95
header file 65
initialization 62
initialization and termination 62
loading models in the Optimizer 61, 98
log files 67
memory management 66
message level 67
objective function 64

optimization 64, 65
sense 73

problem management 62, 66, 95
problem pointer 98
program output 67
return values 95
solution information 65
variables 62, 67
with the Optimizer library 61, 95
writing matrix files 71

blocks 120
declarations 120, 130, 133
functions 171
initializations 130, 134, 149
model 120
parameters 135, 162
procedure 169

bounds 62, 88, 177
conditional 159

Branch and Bound 43
Burglar Problem 118
ByteConversion 102

C
callbacks 84, 104, 113
case 164
cload 31
columns 40, 76, 86, 87

See also variables
comments 126
compile 29
conditional operator 160
Console Xpress 4, 5, 25

active problem 33, 34
Xpress-MP Essentials Index183

batch mode 32
compiling model files 29
controls. See controls
debugging 30
integer problems 42
list of loaded models 34
loading problems 30, 37
model management 33, 35
Mosel. See Mosel
optimization 29, 37
Optimizer. See Optimizer
running models 30, 137, 170
solution information 31, 37
writing matrix files 35

constraints 12, 40, 86, 119, 177
conditional 159
See also bounds

continuation lines 121
controls 3, 43, 44, 81, 82, 111, 177

library prefix 82
create 133, 146

D
databases 3, 152
debugging 14, 30, 51, 95, 163, 170
decision variables. See variables
declarations 120, 130, 133
DEFAULTALG 44
delete 35
display 31
dj. See reduced cost
DLLs 4, 52
do 164
DoubleHolder 110
dual values 40, 54, 178
dynamic 146

E
elif 161
else 161, 164

error checking 95, 111
error messages 14, 30
exit codes 95
exporting data 148

to spreadsheets 153
to text files 151
using writeln 158

exportprob 35, 161

F
F_APPEND. See files, appending data
F_INPUT. See input stream
F_OUTPUT. See output stream
fclose 157, 159
Fibonacci sequence 165
file formats

data files 149
LP format 36, 73
sparse data format 147

files
appending data 158
batch files 4
binary model files (.bim) 14, 30
Excel (.xls) 155
header files (.h) 50, 65, 75
log files (.log) 67, 84
LP matrix files (.lp) 19, 36, 59, 71
Mosel files (.mos) 28, 49
MPS matrix files (.mat) 19, 35, 59, 71
solution files (.prt) 38, 39, 76

finalize 141
fopen 158, 159
forall 125, 165
forward 170, 174
function 171
functions 171

recursion 173

G
getobjval 123
Xpress-MP EssentialsIndex 184

getparam 157
getsol 127
GLOBAL 43
global entities 38, 178
global search 43, 80
graphing 15, 21

H
Hiker Problem 135

I
if 161
importing data 148

from text files 130, 149
using readln 156

index sets 140
initialization 140
numerical indices 124
operators 142
string indices 127, 132

initialization 50, 62, 74
initializations 130, 134, 149
input cost 40, 178
input stream 157, 158
installing software 2, 6
integer 124, 145
integer programming 41, 42, 79, 119, 178
integer solutions. See global search
IntHolder 110
is_binary 121
is_integer 42, 79, 121
iteration. See looping
IVEaddtograph 21
IVEinitgraph 21

J
Java 4, 106

callbacks 113
character arrays and strings 111
checking errors 111

controls and problem attributes 111
numerical arrays and references 110

K
keywords 13, 179
knapsack problem 129

L
Libraries 4, 47

combining 95
components 48, 50
debugging 51
error checking 95
header files 50, 65, 75
memory management 56, 66, 75
Mosel. See Mosel libraries
Optimizer. See Optimizer library
problem pointers 55, 74, 98
return values 95

linear programming 3, 179
list 35
load 30
looping 125, 165
LP relaxation. See global search
LPLOG 16
LPOBJVAL 91, 94
LPSTATUS 83

M
matrix files 19, 35, 59, 71, 74
MAXIM 37

flags 41, 43
maximize 123
memory management 56, 66, 74, 146
Mersenne Primes 171
MINIM 37
minimize 123
MIPOBJVAL 94
mixed integer programming 3, 179
mmive 21
Xpress-MP Essentials Index185

mmodbc 3, 152
mmxprs 122
mod 168
model 180

data 118, 148
displaying model 161
editor. See Xpress-IVE
generic 129
instance 118, 129, 148, 180
keywords 13, 179
model management 33, 35, 54
model program 2, 13, 28, 122, 180
structure 180

model 120
modeling

language 9, 26, 48, 117, 139
versatility 129

Mosel 2, 9, 26
active problem 33, 34
batch mode 32
binary model files 14, 30
compiler library. See Mosel libraries
compiling model files 13, 29, 50
debugging 12, 30
flags 32
graphical user interface 4, 9
libraries. See Mosel libraries
library modules 2, 26

ODBC, mmodbc 3, 152
Optimizer, mmxprs 2, 122

list of loaded models 34
loading models 14, 30
memory management 146
model management 33, 35
model program. See model
optimization 12, 29
parameters 30, 51, 135, 137, 163, 170
run time library. See Mosel libraries
running models 14, 30
shortening commands 31
solution information 31, 123

writing matrix files 19, 35
Mosel language. See modeling
Mosel libraries 48, 49

compiler library 50
compiling model files 50, 51
error checking 95
header files 50
initialization and termination 50
interrupting a model run 58
list of loaded models 55
loading models 49, 51
model management 51, 54, 56, 58
problem pointer 55
return values 95
run time library 50
solution information 52, 53
writing matrix files 59

mosel See Mosel
MPS file. See matrix files
mpvar 120, 146
multiprocessor computing 3

N
newline character 162
null-terminated 89

O
objective function 12, 40, 88, 120, 180

maximizing 37, 65, 122
optimum value 14, 31, 53, 91, 94, 180

obtaining a solution. See solution
ODBC 152
Optimizer 3, 9, 36, 74

algorithm. See algorithm
controls. See controls
input files 36, 74
library. See Optimizer library
log files 84
matrix files 36, 76
memory management 74
Xpress-MP EssentialsIndex 186

message level 85
Mosel module. See Mosel
output 84
parallel 3
performance. See performance tuning
postsolve 81
presolve 80
problem attributes. See problem

attributes
solution 37, 40, 76
thread-safety 74

Optimizer library 48, 74, 99
adding row/column names 90
advanced library functions 74, 86
algorithm. See algorithm
callback functions 84
controls. See controls
error checking 95
initialization and termination 74
log files 84
matrix 86, 92
memory management 74
optimization 74, 76
output 84
problem attributes. See problem

attributes
problem input 74, 76, 86, 98
problem pointer 74, 98
return values 95
solution information 76, 90, 91, 94
thread-safety 74
understanding the solution 76
with BCL 61, 95

optimizer See Console Xpress
output stream 158

P
parameters 30, 51, 135, 137, 170
parameters 135, 162
perfect numbers 171
performance tuning 43, 81

postsolve 81
PRESOLVE 82
presolve 80

changing settings 82
prime numbers 168

Mersenne 171
PRINTSOL 38
problem attributes 82, 111, 181

library prefix 82
problem name 27, 40, 120
problem statistics 20, 37, 38, 67
procedure 169
procedures 169

recursion 173

Q
quadratic programming 3
quick sort algorithm 174
QUIT 27
quit 27

R
read / readln 156
READPROB 37
recursion 173
reduced cost 40, 54, 181
repeat 157, 167
restrictions. See trial mode
returned 171
rows 38, 40, 86, 87

See also constraints
run 30, 137, 170

S
scalars 129
security system 10, 27, 52
select 35
selections 162
slack values 40, 54, 181
software installation 2, 6
Xpress-MP Essentials Index187

solution 14, 39, 53, 65, 90, 181
graphs 15, 21
understanding output 40, 76
viewing 37, 76, 123, 127

sparsity 88, 146
Special Ordered Sets (SOS) 38, 94, 181
spreadsheets 3, 152

array sizing 155
Microsoft Excel 154

SQL 153
SQLconnect 153, 154, 156
SQLdisconnect 153, 154, 156
SQLexecute 153, 154, 156
SQLreadinteger 156
sqrt 168
string 124, 132, 134
string indices 127
StringHolder 110
subroutine libraries. See Libraries
sum 125
summation 125

T
tab character 166
text-based. See Console Xpress
then 161
times table 166
trial mode 10, 27

U
until 167
uses 123

V
variables

array 67, 124
binary 119, 121, 177
conditional 160
continuous 177
creation 133, 146

decision variables 12, 40, 86, 119, 178
dynamic array variables 133, 147, 160
integer 41, 79, 93, 121, 179
linear 179
partial integer 180
semi-continuous 181
subscripted variables 124

vbNullString 102
Visual Basic 4, 99

argument types, 100
callbacks 104
character arrays 101
NULL arguments 102
numerical arrays 100

W
warning messages 14, 30
while 166
Windows DLLs. See DLLs
write / writeln 123, 158
WRITEPRTSOL 37, 38

X
XPRBaddterm 64
XPRBarrvar 68
XPRBctr 63
XPRBdelprob 66
XPRBexportprob 72
XPRBfree 66
XPRBgetobjval 65
XPRBgetsol 65
XPRBgetXPRSprob 98
XPRBinit 62
XPRBloadmat 98
XPRBmaxim 65
XPRBnewarrsum 69
XPRBnewarrvar 68
XPRBnewctr 63
XPRBnewprob 62, 98
XPRBnewvar 63
Xpress-MP EssentialsIndex 188

XPRBprob 62
XPRBsetmsglevel 67
XPRBsetobj 64
XPRBsetsense 73
XPRBsetterm 64
XPRBvar 63
Xpress-IVE 4, 9

adding files 11
control options 16
debugging 12, 14
environment settings 22
keyword menu 13
model editor 10, 12
model management 13, 14, 17
project management 10, 11
settings 22
solution graphs 15, 21
windows

Build pane 14
Entities pane 15
Language/Tabs pane 22
Locations pane 15
Misc pane 22
Output/Input pane 14
Project Files pane 10
Sim:Obj(iter) pane 15
User Graph pane 21

writing matrix files 19
Xpress-MP 1

components 2
Console Xpress. See Console Xpress
graphical user interface 9
installation 2, 6, 27
interfaces 4, 6
libraries. See Libraries
licenses 10
Mosel. See Mosel
Optimizer. See Optimizer
restrictions on use 10, 27
security system 10
setting up libraries 2

Xpress-IVE. See Xpress-IVE
xprm_mc 50
xprm_rt 50
XPRMalltypes 53
XPRMcompmod 51
XPRMexportprob 59
XPRMfindident 53
XPRMfree 50
XPRMgetdual 54
XPRMgetmodinfo 56
XPRMgetnextmod 56
XPRMgetobjval 53
XPRMgetrcost 54
XPRMgetslack 54
XPRMgetvsol 53
XPRMinit 50
XPRMisrunmod 58
XPRMloadmod 51
XPRMmodel 51
XPRMmpvar 53
XPRMrunmod 51
XPRMstoprunmod 58
XPRMunloadmod 56
XPRSaddnames 90
XPRSaddrows 81, 92
XPRSchgbounds 101
XPRScreateprob 75
XPRSdestroyprob 75
XPRSfree 75
XPRSgetdblattrib 83
XPRSgetdblcontrol 82
XPRSgetintattrib 83
XPRSgetintcontrol 82
XPRSgetnames 102
XPRSgetobj 100
XPRSgetsol 90
XPRSgetstrattrib 83
XPRSgetstrcontrol 82
XPRSinit 74
XPRSloadglobal 93
XPRSloadlp 86
Xpress-MP Essentials Index189

XPRSmaxim 76
flags 78, 80

XPRSreadprob 76
XPRSsetcbmessage 85
XPRSsetdblcontrol 83
XPRSsetintcontrol 83
XPRSsetlogfile 84
XPRSsetstrcontrol 83
XPRSwriteprtsol 76
Xpress-MP EssentialsIndex 190

	Contents
	Getting Started
	Introduction
	Xpress-MP Components and Interfaces
	Xpress-Mosel
	The Xpress-Optimizer
	Xpress-IVE
	Console Xpress
	The Xpress-MP Libraries
	Which Interface Should You Use?

	How to Read this Book
	Structure of the Book
	Conventions Used

	Xpress-IVE
	Getting Started
	Starting Xpress-IVE

	Entering a Simple Model
	Working With Projects
	The Model Editor
	Compile…Load…Run!
	Obtaining Further Information from Xpress-IVE

	Going Further with Xpress-IVE
	Setting Control Options
	Running Multiple Models
	Writing Matrix Files
	Loading Problems from Matrix Files
	Graphing Functions
	Changing Your Environment

	Getting Help

	Console Xpress
	Getting Started
	The Components of Console Xpress
	Testing Xpress-Mosel
	Testing the Xpress-Optimizer

	Solving a Simple Problem with Xpress-Mosel
	The Mosel File
	The Three Pillars of Mosel
	Obtaining Further Information From Mosel

	Going Further With Mosel
	Running in Batch Mode
	Running Multiple Models
	Writing Matrix Files

	Working with the Xpress-Optimizer
	Solving a Problem
	Viewing the Solution
	Output from WRITEPRTSOL

	Going Further with the Optimizer
	Optimization Algorithms
	Integer Programming
	Optimizer Controls

	Getting Help

	The Xpress-MP Libraries
	Getting started
	The Components of the Xpress-MP Libraries

	Working with the Mosel Libraries
	Entering a Simple Model
	Components of the Mosel Libraries
	The Three Pillars of Mosel
	Obtaining Solution Information

	Going Further with the Mosel Libraries
	Working with Several Models
	Run Time Management
	Writing Matrix Files

	Working with Xpress-BCL
	A First Formulation for the Model
	Solving the Problem with BCL
	Formulating the Problem Using Array Variables

	Going Further with BCL
	Integer Programming
	Writing Matrix Files

	Working with the Xpress-Optimizer Library
	Solving an LP Problem with the Optimizer Library
	Obtaining the Solution Using XPRSwriteprtsol

	Going Further with the Optimizer Library
	Changing the Optimization Algorithm
	Integer Programming
	Presolve and Everything After
	Controls and Problem Attributes
	Interacting with the Optimization Process

	Loading Models from Memory
	Loading LP Problems with the Optimizer Library
	Obtaining a Solution to the Problem
	Altering the Problem Matrix
	Loading MIP Problems with the Optimizer Library

	Getting the Best out of the Xpress-MP Libraries
	Error Checking
	Combining BCL with the Optimizer Library

	Using Visual Basic with the Xpress-MP Libraries
	Included Files
	Principal Structures
	Using Callbacks in Visual Basic

	Using Java with the Xpress-MP Libraries
	The Java Builder Component Library (BCL)
	The Java Optimizer Library
	Principal Structures
	Using Callbacks in Java

	Getting Help

	Modeling with Xpress-MP
	Introduction
	Constructing our First Model
	The Burglar Problem
	Problem Specification
	Entering the Model into Xpress-Mosel
	The Optimizer Library Module

	Modeling Using Arrays
	Array Variables and Indexing
	Looping and Summation
	Comments
	Using String Indices

	Versatility in Modeling
	Generic and Instantiated Models
	Scalar Declarations
	Inputting Data From Text Files
	Completing the Burglar Problem
	Using Parameters with Mosel
	The Hiker Problem
	Solving the Hiker Problem

	Getting Help

	Further Mosel Topics
	Introduction
	Working With Sets
	Dynamic, Fixed and Finalized Sets
	Set Operations

	Working with Arrays
	Multi-Dimensional Arrays
	Fixed and Dynamic Arrays
	Sparsity

	Importing and Exporting Data
	Model Data Entry
	Data Transfer Using the initializations Block
	Data Transfer Using ODBC
	Data Transfer Using readln and writeln Commands

	Conditional Variables and Constraints
	Conditional Bounds
	Conditional Variables

	Basic Programming Structures
	if Statements
	case Statements
	forall Loops
	while Loops
	repeat Loops

	Procedures and Functions
	Procedures
	Functions
	Recursion
	Forward Declaration

	Glossary of Terms
	binary variable
	bound
	constraint
	constraint type
	continuous variable
	control
	decision variable
	dj
	dual value
	global entity
	input cost
	integer programming (IP) problem
	integer variable
	keyword (in Mosel)
	linear expression
	linear inequality or equation
	linear programming (LP) problem
	linear variable
	mixed integer programming (MIP) problem
	model
	model instance
	model program
	model structure
	objective function
	optimal solution
	partial integer variable
	problem attribute
	reduced cost
	right hand side (RHS)
	semi-continuous variable
	shadow price
	slack value
	solution
	special ordered set (SOS)
	variable

	Index

