[1] |
N. Castells-Brooke.
Beginner's guide to molecular biology.
web pages. [ bib | http ] |
[2] |
J. C. Setubal and J. Meidanis.
Introduction to Computational Molecular Biology.
PWS Publishing Company, 1997.
ISBN: 0-534-95262-3. [ bib ] [ CompSim.txt ] |
[3] |
P. Pevzner.
Educating biologists in the 21st century: bioinformatics scientists
versus bioinformatics technicians.
Bioinformatics, 20(14):2159-2161, 2004.
Editorial. [ bib | .pdf ] |
[4] |
S. R. Eddy.
Antedisciplinary science.
PLoS Comput. Biol., 1(1):3-4, 2005.
e6. [ bib | .pdf ] |
[5] |
R. F. Doolittle.
On the trail of protein sequences.
Bioinformatics, 16(1):24-33, 2000. [ bib | .pdf ] |
[6] |
J. A. A. Quitzau.
Um consenso completamente resolvido entre árvores filogenéticas
completamente resolvidas.
Master's thesis, Institute of Computing, University of Campinas,
2005.
Revised 2007 version. [ bib | .ps ] |
[7] |
J. Felsenstein.
Inferring Phylogenies.
Sinauer Associates, Inc., 2004.
ISBN: 0-87893-177-5. [ bib ] |
[8] |
M. Farach, S. Kannan, and T. Warnow.
A robust model for finding optimal evolutionary trees.
Algorithmica, 13:155-179, 1995.
Special Issue on Computational Biology. [ bib | .pdf ] |
[9] |
D. Gusfield and S. H. Orzack.
Haplotype inference.
In Srinivas Aluru, editor, Handbook of Computational Molecular
Biology, volume 9 of Information Science Series, chapter 18. Chapman &
Hall/CRC, 2005. [ bib | .pdf ] |
[10] |
X. Huang and A. Madan.
CAP3: A DNA sequence assembly program.
Genome Research, 9:868-877, 1999. [ bib | .pdf ] |
[11] |
P. Pevzner, H. Tang, and M. S. Waterman.
An Eulerian path approach to DNA fragment assembly.
Proc. Nat. Acad. Sci. - USA, 98(17):9748-9753, 2001. [ bib | .pdf ] |
[12] |
S. L. Salzberg and J. A. Yorke.
Beware of mis-assembled genomes.
Bioinformatics, 21(24):4320-4321, 2005.
Letter to the Editor. [ bib | .pdf ] |
[13] |
A. V. Zimin, D. R. Smith, G. Sutton, and J. A. Yorke.
Assembly reconciliation.
Bioinformatics, 24(1):42-45, 2008. [ bib | .pdf ] |
[14] |
V. Bafna and P. A. Pevzner.
Sorting by transpositions.
SIAM J. Discrete Math., 11(2):224-240, May 1998. [ bib | .pdf ] |
[15] |
S. Mneimneh.
Genome rearragement, sorting signed permutations by reversals.
Lectures 16 and 17 from course CSE 8354 - Computational Biology,
Southern Methodist University, Dallas, USA, 2004. [ bib | http ] |
[16] |
D. A. Bader, B. M. E. Moret, and M. Yan.
A linear-time algorithm for computing inversion distance between
signed permutations with an experimental study.
Journal of Computational Biology, 8(5):483-491, 2001. [ bib | .pdf ] |
[17] |
S. Yancopoulos, O. Attie, and R. Friedberg.
Efficient sorting of genomic permutations by translocation, inversion
and block interchange.
Bioinformatics, 21(16):3340-3346, 2005. [ bib | .pdf ] |
[18] |
A. Bergeron, J. Mixtacki, and J. Stoye.
On sorting by translocations.
Journal of Computational Biology, 13(2):567-578, 2006. [ bib | .pdf ] |
[19] |
S. Benzer.
On the topology of the genetic fine structure.
Proc. Nat. Acad. Sci. - USA, 45:1607-1620, 1959. [ bib | .pdf ] |
[20] |
K. S. Booth and G. S. Lueker.
Testing for the consecutive ones property, interval graphs, and graph
planarity using PQ-tree algorithms.
J. Comput. Systems Sci., 13(3):335-379, 1976. [ bib ] |
[21] |
J. Meidanis, O. Porto, and G. P. Telles.
On the consecutive ones property.
Discrete Applied Mathematics, 88:325-354, 1998. [ bib | .pdf ] |
[22] |
G. P. Telles and J. Meidanis.
Building PQR trees in almost linear time.
Submitted for publication, 2007. [ bib | .pdf ] |