Defesa de Doutorado de Ícaro Cavalcante Dourado

13 mar 2020
10:00 Defesa de Doutorado Sala 85 - IC 2
Tema
Graph-based rank aggregation
Aluno
Ícaro Cavalcante Dourado
Orientador / Docente
Ricardo da Silva Torres
Breve resumo
Neste trabalho, apresentamos uma abordagem robusta de agregação de listas baseada em grafos, capaz de combinar resultados de modelos de recuperação isolados. O método segue um esquema não supervisionado, que é independente de como as listas isoladas são geradas. Nossa abordagem é capaz de incorporar modelos heterogêneos, de diferentes critérios de recuperação, tal como baseados em conteúdo textual, de imagem ou híbridos. Reformulamos o problema de recuperação ad-hoc como uma recuperação baseada em fusion graphs, que propomos como um novo modelo de representação unificada capaz de mesclar várias listas e expressar automaticamente inter-relações de resultados de recuperação. Assim, mostramos que o sistema de recuperação se beneficia do aprendizado da estrutura intrínseca das coleções, levando à maior eficácia. Nossa formulação de agregação baseada em grafos, diferentemente das abordagens existentes, permite encapsular informação contextual oriunda de múltiplas listas, que podem ser usadas diretamente para ranqueamento. Experimentos realizados demonstram que o método apresenta alto desempenho, produzindo melhores eficácias que métodos recentes da literatura e promovendo ganhos expressivos sobre os métodos de recuperação fundidos. Outra contribuição é a extensão da proposta de grafo de fusão visando consulta eficiente. Trabalhos anteriores são promissores quanto à eficácia, mas geralmente ignoram questões de eficiência. Propomos uma função inovadora de agregação de consulta, não supervisionada, intrinsecamente multimodal almejando recuperação eficiente e eficaz. Introduzimos os conceitos de projeção e indexação de modelos de representação de agregação de consulta com base em grafos, e a sua aplicação em tarefas de busca. Formulações de projeção são propostas para representações de consulta baseadas em grafos. Introduzimos os fusion vectors, uma representação de fusão tardia de objetos com base em listas, a partir da qual é definido um modelo de recuperação baseado intrinsecamente em agregação. A seguir, apresentamos uma abordagem para consulta rápida baseada nos vetores de fusão, promovendo agregação de consultas eficiente. O método apresentou alta eficácia quanto ao estado da arte, além de trazer uma perspectiva de eficiência pouco abordada. Ganhos consistentes de eficiência são alcançadas em relação aos trabalhos recentes. Também propomos modelos de representação baseados em consulta para problemas gerais de predição. Os conceitos de grafos de fusão e vetores de fusão são estendidos para cenários de predição, onde podem ser usados para construir um modelo de estimador para determinar se um objeto de avaliação (ainda que multimodal) se refere a uma classe ou não. Experimentos em tarefas de classificação multimodal, tal como detecção de inundação, mostraram que a solução é altamente eficaz para diferentes cenários de predição que involvam dados textuais, visuais e multimodais, produzindo resultados melhores que vários métodos recentes. Por fim, investigamos a adoção de abordagens de aprendizagem para ajudar a otimizar a criação de modelos de representação baseados em consultas, a fim de maximizar seus aspectos de capacidade discriminativa e eficiência em tarefas de predição e de busca.
Banca examinadora
Titulares:
Ricardo da Silva Torres IC/UNICAMP
Edleno Silva de Moura ICOMP/UFAM
Renata de Matos Galante INF/UFRGS
Julio Cesar dos Reis IC/UNICAMP
André Santanchè IC/UNICAMP
Suplentes:
Gerberth Adín Ramírez Rivera IC/UNICAMP
Alexandre Xavier Falcão IC/UNICAMP
Altigran Soares da Silva ICOMP/UFAM