05 dez 2019
09:30 Auditório 2
Tema
An Eternal Domination Problem: Graph Classes, Solving Methods, and Practical Standpoint
Aluno
Andrei de Almeida Sampaio Braga
Orientador / Docente
Cid Carvalho de Souza
Breve resumo
O problema do conjunto dominante m-eterno é um problema de otimização em grafos que tem sido muito estudado nos últimos anos e para o qual se têm listado aplicações em vários domínios. O objetivo é determinar o número mínimo de guardas que consigam defender eternamente ataques nos vértices de um grafo; denominamos este número o índice de dominação m-eterna do grafo. Nesta tese, estudamos o problema do conjunto dominante m-eterno: lidamos com aspectos de natureza teórica e prática e abordamos o problema restrito a classes específicas de grafos e no caso geral. Examinamos o problema do conjunto dominante m-eterno com respeito a duas classes de grafos: os grafos de Cayley e os conhecidos grafos de intervalo próprios. Primeiramente, mostramos ser inválido um resultado sobre os grafos de Cayley presente na literatura, provamos que o resultado é válido para uma subclasse destes grafos e apresentamos outros achados. Em segundo lugar, fazemos descobertas em relação aos grafos de intervalo próprios, incluindo que, para estes grafos, o índice de dominação m-eterna é igual à cardinalidade máxima de um conjunto independente e, por consequência, o índice de dominação m-eterna pode ser computado em tempo linear. Tratamos de uma questão que é fundamental para aplicações práticas do problema do conjunto dominante m-eterno, mas que tem recebido relativamente pouca atenção. Para tanto, introduzimos dois métodos heurísticos, nos quais formulamos e resolvemos modelos de programação inteira e por restrições para computar limitantes ao índice de dominação m-eterna. Realizamos um vasto experimento para analisar o desempenho destes métodos. Neste processo, geramos um benchmark contendo 750 instâncias e efetuamos uma avaliação prática de limitantes ao índice de dominação m-eterna disponíveis na literatura. Por fim, propomos e implementamos um algoritmo exato para o problema do conjunto dominante m-eterno e contribuímos para o entendimento da sua complexidade: provamos que a versão de decisão do problema é NP-difícil. Pelo que temos conhecimento, o algoritmo proposto foi o primeiro método exato a ser desenvolvido e implementado para o problema do conjunto dominante m-eterno.